15 research outputs found

    A Study of Hardware Performance Counters Selection for Cross Architectural GPU Power Modeling

    Get PDF
    In the exascale race where huge corporations are spending billions of dollars on designing highly efficient heterogeneous supercomputers, the real need to reduce power envelopes forces current technologies to face crucial challenges as well as it demands the scientific community to evaluate and optimize the performance-power ratio. While energy consumption continues to climb up, the viability of these massive systems becomes a growing concern. In this context, the relevance of specific power-related research works turns into a priority. So we here develop an exhaustive step-by-step process for selecting a comprehensive set of hardware performance counters to serve as an input in an eventual GPU cross-architectural power consumption model. Our experiments show a high power-performance correlation between shared GPU events. Also, we present a set of events that delivers exclusive performance information in order to predict accurately GPU power fluctuations.XX Workshop Procesamiento Distribuido y Paralelo.Red de Universidades con Carreras en Informátic

    A Study of Hardware Performance Counters Selection for Cross Architectural GPU Power Modeling

    Get PDF
    In the exascale race where huge corporations are spending billions of dollars on designing highly efficient heterogeneous supercomputers, the real need to reduce power envelopes forces current technologies to face crucial challenges as well as it demands the scientific community to evaluate and optimize the performance-power ratio. While energy consumption continues to climb up, the viability of these massive systems becomes a growing concern. In this context, the relevance of specific power-related research works turns into a priority. So we here develop an exhaustive step-by-step process for selecting a comprehensive set of hardware performance counters to serve as an input in an eventual GPU cross-architectural power consumption model. Our experiments show a high power-performance correlation between shared GPU events. Also, we present a set of events that delivers exclusive performance information in order to predict accurately GPU power fluctuations.XX Workshop Procesamiento Distribuido y Paralelo.Red de Universidades con Carreras en Informátic

    A Study of Hardware Performance Counters Selection for Cross Architectural GPU Power Modeling

    Get PDF
    In the exascale race where huge corporations are spending billions of dollars on designing highly efficient heterogeneous supercomputers, the real need to reduce power envelopes forces current technologies to face crucial challenges as well as it demands the scientific community to evaluate and optimize the performance-power ratio. While energy consumption continues to climb up, the viability of these massive systems becomes a growing concern. In this context, the relevance of specific power-related research works turns into a priority. So we here develop an exhaustive step-by-step process for selecting a comprehensive set of hardware performance counters to serve as an input in an eventual GPU cross-architectural power consumption model. Our experiments show a high power-performance correlation between shared GPU events. Also, we present a set of events that delivers exclusive performance information in order to predict accurately GPU power fluctuations.XX Workshop Procesamiento Distribuido y Paralelo.Red de Universidades con Carreras en Informátic

    Multi-FSR Silicon Photonic Flex-LIONS Module for Bandwidth-Reconfigurable All-to-All Optical Interconnects

    Get PDF
    This article proposes and experimentally demonstrates the first bandwidth-reconfigurable all-to-all optical interconnects using a multi-Free-Spectral-Ranges (FSR) integrated 8 × 8 SiPh Flex-LIONS module. The multi-FSR operation utilizes the first FSR (FSR1) to steer the bandwidth between selected node pairs and the zeroth FSR (FSR0) to guarantee a minimum diameter all-to-all topology among the interconnected nodes after reconfiguration. Successful Flex-LIONS design, fabrication, packaging, and system testing demonstrate error-free all-to-all interconnects for both FSR0 and FSR1 with a 5.3-dB power penalty induced by AWGR intra-band crosstalk under the worst-case polarization scenario. After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50 to 125 Gb/s while maintaining a 25 Gb/s/λ all-to-all interconnectivity in FSR0

    Silicon Photonic Flex-LIONS for Bandwidth-Reconfigurable Optical Interconnects

    Get PDF
    This paper reports the first experimental demonstration of silicon photonic (SiPh) Flex-LIONS, a bandwidth-reconfigurable SiPh switching fabric based on wavelength routing in arrayed waveguide grating routers (AWGRs) and space switching. Compared with the state-of-the-art bandwidth-reconfigurable switching fabrics, Flex-LIONS architecture exhibits 21× less number of switching elements and 2.9× lower on-chip loss for 64 ports, which indicates significant improvements in scalability and energy efficiency. System experimental results carried out with an 8-port SiPh Flex-LIONS prototype demonstrate error-free one-to-eight multicast interconnection at 25 Gb/s and bandwidth reconfiguration from 25 Gb/s to 100 Gb/s between selected input and output ports. Besides, benchmarking simulation results show that Flex-LIONS can provide a 1.33× reduction in packet latency and >1.5× improvements in energy efficiency when replacing the core layer switches of Fat-Tree topologies with Flex-LIONS. Finally, we discuss the possibility of scaling Flex-LIONS up to N = 1024 ports (N = M × W) by arranging M^2 W-port Flex-LIONS in a Thin-CLOS architecture using W wavelengths

    Supporting efficient overlapping of host-device operations for heterogeneous programming with CtrlEvents

    Get PDF
    Producción CientíficaHeterogeneous systems with several kinds of devices, such as multi-core CPUs, GPUs, FPGAs, among others, are now commonplace. Exploiting all these devices with device-oriented programming models, such as CUDA or OpenCL, requires expertise and knowledge about the underlying hardware to tailor the application to each specific device, thus degrading performance portability. Higher-level proposals simplify the programming of these devices, but their current implementations do not have an efficient support to solve problems that include frequent bursts of computation and communication, or input/output operations. In this work we present CtrlEvents, a new heterogeneous runtime solution which automatically overlaps computation and communication whenever possible, simplifying and improving the efficiency of data-dependency analysis and the coordination of both device computations and host tasks that include generic I/O operations. Our solution outperforms other state-of-the-art implementations for most situations, presenting a good balance between portability, programmability and efficiency.Ministerio de Ciencia e Innovación - FEDER (TIN2017-88614-R)Junta de Castilla y León (VA226P20)Ministerio de Ciencia e Innovación - AEI and European Union NextGenerationEU/PRTR (TED2021–130367B–I00 and MCIN/AEI/10.13039/501100011033
    corecore