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Abstract. In the exascale race where huge corporations are spending
billions of dollars on designing highly efficient heterogeneous supercom-
puters, the real need to reduce power envelopes forces current technolo-
gies to face crucial challenges as well as it demands the scientific commu-
nity to evaluate and optimize the performance-power ratio. While energy
consumption continues to climb up, the viability of these massive sys-
tems becomes a growing concern. In this context, the relevance of specific
power-related research works turns into a priority. So we here develop
an exhaustive step-by-step process for selecting a comprehensive set of
hardware performance counters to serve as an input in an eventual GPU
cross-architectural power consumption model. Our experiments show a
high power-performance correlation between shared GPU events. Also,
we present a set of events that delivers exclusive performance information
in order to predict accurately GPU power fluctuations.

Keywords: GPU · Architectures · Performance Counters · Power Con-
sumption · Correlation · Prediction.

1 Introduction

Currently, High Performance Computing (HPC) systems are power-bounded,
and this trend is expected to continue for the upcoming future. Then, an exascale
computing system (order 1018 FLOPS) estimated to arrive in 2021, is expected
to work under a rigorous 20-40 megawatts power scope [1][2][3]. To meet this
performance (a thousandfold increase over the first petascale computer) in an
acceptable power cost will require to exploit improvements and innovations in
hardware and software design. The major hurdles for the scientific community
include excessive energy consumption, higher fault rate, and porting applications
from petascale to exascale computing [4][5].
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So as to improve energy efficiency the HPC community has adopted at an
impressive rate the use of accelerator-based supercomputers. Furthermore, the
NVIDIA Graphics Processing Units (GPUs) have completely outperformed its
main competitor, the Intel Xeon Phi, becoming the principal general purpose
accelerator for any supercomputer system. Current general purpose computing
on GPUs (GPGPU) applications can be found in the HPC area [6] but there are
plenty of emerging applications in other domains. Examples are deep learning
[7], autonomous vehicles [8], image processing [9][10], encryption [11][12], medical
algorithms [13][14], among others.

Together with their performance capabilities, GPU-based accelerators are
also popular because of their remarkable energy efficiency [15][16], as portrayed in
The Green500 list [17]. The June 2019 ranking shows that 8 of 10 top (performance-
per-watt) computer systems incorporate GPU accelerators.

As the usage of GPUs has become dominant, it is increasingly critical to
investigate the power consumption profile, to identify eventual power bottlenecks
and to find mechanisms to maximize their energy efficiency when running real
applications.

Since not all the current GPUs that constitute world’s largest HPC centers
are equipped with power sensors that can directly assess the power dissipation,
the device power is either inspected from a isolated power meter or derived from
the examined current and voltage. Nevertheless, variations in power consumption
happen so fast that an external measurement reading cannot provide an in time
accurate sample. Also such approaches do not represent a practical solution
especially on large-scale distributed systems being the fact that they involve
additional hardware devices.

In contrast, the design and use of software approaches to predict power con-
sumption is still in progress. Albeit some prior attempts have been made with
some constrains like targeting a particular application or architecture, they can-
not contribute to the understanding of GPU power consumption considering the
lack of analysis in the metrics they can gather.

So an alternative is to directly measure processor events that are causing
energy and temperature changes, and to analyze metrics correlation with power
consumption. The best proxies for this approach are the hardware performance
counters found in all modern computer architectures. Considering a very large
number of counters, the task of selecting events that are most representative of
the full system power profile is becoming a challenge. Furthermore, the complex-
ity naturally increases when different types of GPU architecture implementations
are considered. The matter is further problematic by the fact that each one has
a finite number of registers that can be simultaneously recorded reducing the
prediction accuracy.

Generally, selected counters and power prediction models vary from one
CPU/GPU architecture to the next due to differences in the accessibility and
availability of hardware counters and the fact that different subset of counters
can reduce the power prediction error in a given microarchitecture.
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In this work, we investigate and analyze hardware performance counters on
two different GPU architectures to test its correlation with power consumption.
Furthermore, we are seeking for a common subset of performance events in order
to build a statistical cross-architecture power prediction model.

The rest of this paper is organized as follows. In Section 2 we review some
of the related work. Section 3 provides some background information about per-
formance counters, power measurement, the studied GPU architectures and a
brief description of the instrumented benchmarks. Section 4 describes the prac-
tical methodology while Section 5 covers our experimentation analysis. Finally,
Section 6 includes some conclusions of this work.

2 Related Work

Similar previous works have widely focused on using hardware counters to ana-
lyze performance and power in CPU architectures. Isci et al. [18] have developed
a software tool that provides real time power measurements for Intel Pentium
4 processors using hardware counters. Lim et al. [19] have constructed a power
estimation model for an Intel Core i7 system based on hardware performance
counters and a statistical regression method. Bellosa [20] has exploited active
hardware units information (from performance events) to establish a thread-
specific energy accounting. On the GPU side, Song et al. [21] have combined
hardware performance counter data with machine learning and advanced ana-
lytics to model power-performance efficiency on GPUs. They briefly described
the event collection and selection processes.

3 Background

3.1 Performance Counters

Hardware performance counters are a set of special-purpose registers built into
today architectures to read and store the counts of low-level hardware activities
within the device. They provide high-speed access to a considerable amount of
performance information related to the circuit functional units, multiple caches,
main and special memories, register banks, etc.

However, the types, meanings and number of hardware counters that we
can access heavily depends on the architecture being used due to the aggres-
sive growth of technology processes. Apart from architectural restrictions, the
NVIDIA compute capability also limit the number of events we can collect from
a particular GPU version. As a result, our Fermi-based accelerator with compute
capability 2.0 contains 4 hardware registers and 74 countable events while our
Pascal one (capability 6.1) presents 8 registers and 70 events.

So for a given NVIDIA GPU, we can collect the full range of events through
three different approaches. The low-level one implies to use CUPTI (CUDA
Performance Tools Interface) [22], a dynamic library that enables the creation
of profiling and tracing tools. It is generally included in the CUDA Toolkit [23].
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Whereas it supports all available platforms, the library needs modifications in
the source code.

On the other hand, we can employ the PAPI-CUDA component to quantify
GPU performance events [24]. It is a hardware performance counter measure-
ment technology based on CUPTI. The library is distributed with the latest
releases of PAPI and it also needs a source code instrumentation.

Finally and on a high level, the NVPROF tool enables the collection and
description of profiling data from the command-line [25]. It does not require
to modify the application source code and it also includes a Visual Profiler
to automatically generate a timeline of application’s CPU and GPU activity
including events and metrics.

In this work, we make use of NVPROF to gather performance event samples
during a given kernel execution.

3.2 Power Measurement

We apply a software measurement approach, where GPU power consumption is
monitored using the NVIDIA Management Library (NVML) [26].

NVML is a C-based API for supervising and managing diverse NVIDIA
GPUs features like the ability to set/unset ECC (Error Correction Code), or
to monitor memory usage, temperature, utilization rates, and more. Moreover,
this library provides the ability to query power consumption at runtime through
the built-in power sensor.

Therefore, we coded a power measurement tool that queries the GPU sensor
via NVML and stores data logs to disk. The sampling frequency is fixed at
62.5Hz (16 ms) [27][28].

3.3 GPU Architectures

This work focuses on Fermi and Pascal NVIDIA GPU architectures. Among
these different hardware generations, we examine the Fermi-based Tesla C2075
GPU and the Pascal-based GTX Titan Xp GPU exploring performance relations.
The old-fashioned Fermi architecture correspond to the initial GPU generations
(after Tesla) while Pascal represents a recent graphics hardware. Table 1 details
the specifications of the studied devices.

Table 1. Hardware specifications.

Feature Tesla C2075 GTX Titan Xp

Architecture Fermi Pascal
Process Size (nm) 40 16
Transistor Count (M) 3000 11800
TDP (Watts) 225 250
CUDA Cores 448 3584
Memory Size (GB) 6 12
Memory Bandwidth (GB/s) 144 547
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These GPUs are designed for massive parallel processing employing the
SPMD (Single Program Multiple Data) paradigm. They consist of a large num-
ber of streaming multiprocessors (SMs), each one containing multiple small hard-
ware units called streaming processors (SPs) for classical processing, load/store
(LD/ST) units, special function units (SFUs) to handle particular calculations
and a set of high-speed registers for thread local storage. Each SP has one or
multiple fully pipelined integer arithmetic logic units and floating point units.
The GPUs also include a L1 cache memory for each SM and an unified L2 cache
memory shared by all the SMs. More than that, these devices have an on-chip
cached texture memory for 2D spatial locality (image and video applications).
They also incorporate an off-chip DRAM global memory supporting a fixed GB
data capacity. Then, a PCI-Express bus is used to connect the host system to
one or multiple GPUs for bidirectional data transferring.

In the software side, a kernel is executed in parallel by an array of threads.
These threads are arranged as a grid of thread blocks in which different kernels
can have a diverse grid/block configuration. The grid of blocks and the thread
blocks are organized in a three-dimensional hierarchy. So, when a CUDA program
invokes a kernel grid, the blocks are enumerated and distributed to SMs with
available execution capacity. Threads in a thread block execute concurrently on
one SM, and multiple thread blocks can execute concurrently on one SM. As
thread blocks finishes, new blocks are launched on the vacated SMs. Finally, the
basic scheduling unit of GPU execution is the warp. It is a group of threads that
are executed simultaneously by an SM. The mapping between warps and thread
blocks can affect the kernel performance.

3.4 Benchmarks

To explain our experimental methodology, we tested a wide variety of GPU
applications collecting at the same time power and performance counters data.
We chose workloads that exploits different computational, communication and
synchronization patterns representing a spectrum of application models.

The benchmarks include Rodinia, Polybench and CUDA SDK programs
[29][30][31]. In particular, Rodinia is a set of benchmark applications designed
for heterogeneous computing environments. To provide a high-level abstraction
of common computing, memory access and communication patterns, each appli-
cation is classified according to the Berkeley's dwarf taxonomy [32]. Polybench
is a selection of CUDA codes to test different NVIDIA GPUs. In addition, we
also include samples from the CUDA SDK that are incorporated in the CUDA
Toolkit.

These benchmarks include programs representing a high number of real world
applications like Data Mining, Image and Video Processing, Linear Algebra,
Finance, Simulation, Physics, among others.

4 Experimental Methodology

In this section, we explain the proposed experimental methodology.
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Firstly, we modified all the involved applications to include a profiling CPU
thread using the Pthreads library, that periodically collects live power data from
built-in sensors via NVML. Then, the only communication between the power
measuring thread and computational threads is a flag variable. Each kernel ex-
ecution is repeated multiple times for an accurate analysis. The problem sizes
for the different applications were chosen to ensure enough power data points.
Finally, power readings are stored in a log file for further processing.

Later, we run the compiling process for all the application benchmarks on
both GPU architectures. Furthermore, in order to gather a record of performance
events the on-chip GPU monitoring counters are periodically sampled. This
counters acquiring process occur in a new application execution using NVPROF,
which stores a csv file with hardware counter information.

Lastly, we combine hardware counter data with power readings using Python
for statistical analysis. Figure 1 resumes the mentioned experimental methodol-
ogy.

Fig. 1. Experimental framework.

5 Evaluation and Analysis

5.1 Performance Event Support

Since the evaluated GPUs correspond to very distinctive architectures, we got
different performance events depending on the accelerator hardware. Figure 2
details the supported events in the examined generations.

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-131-



Fig. 2. Supported events.
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Only 50% of the collected events are shared by both architectures. As one and
the other are very distant on the NVIDIA generation roadmap, their hardware
features sorely differ.

Apart from the increase in the number of single precision and double preci-
sion cores, number of load/store units, number of special function units, size of
register file and memory caches, the Pascal architecture integrates other radical
technological improvements with respect to Fermi.

The Titan Xp includes half precision floating point operations for high per-
formance Deep Learning. Also, it supports unified memory, a single memory
address space accessible from any processor in a system. This technology allows
applications to allocate data that can be read or written from code running on
either CPUs or GPUs. While Fermi GPUs featured a configurable shared mem-
ory and L1 cache that could split the allocation of memory between L1 and
shared memory functions depending on workload, beginning with Maxwell, the
cache hierarchy was changed. A Pascal SM has its own dedicated pool of shared
memory and an L1 cache that can also serve as a texture cache depending on
workload.

These factors lead to considerable differences in available performance at-
tributes across different GPU architectures.

5.2 Performance Event Selection

In this section we would like to restrict our exploration to a small subset of
performance events that would have strong impact on GPU power consumption.
Since we are searching for an online power prediction model, we limit ourselves
to the minimum number of hardware registers that are available on both mi-
croarchitectures. In this case, the Tesla GPU has 4 performance event slots so it
delimits the number of events that can be simultaneously gathered in real time
for the whole application.

The steps involved in our experimentation are specified below:
1. GPU performance events and power samples are collected for each bench-

mark by running the CUDA applications multiple times.
2. All performance events are normalized based on the total number of elapsed

clock cycles per multiprocessor yielding a performance event rate for each counter
on every application.

3. Events showing a zero value across all applications are removed in a pre-
processing task.

4. Pearson, Spearman and Kendall Tau correlations are computed between
performance rates and power consumption for all the benchmarking applications.

5. A filter is created to eliminate those events that are not common among
all correlation methods.

6. Two thresholds are established, one for positive correlation and the other
for the negative one. These border values are chosen so as to filter a high number
of performance events within step 5.

7. Event rates showing an overall correlation below the threshold are dis-
carded.
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8. From the remaining set of strong power-performance correlation, the mu-
tual correlation is analyzed. This process identifies redundant information.

9. Select as many events as the architecture support. Start by picking an
unique event rate for each hardware functionality.

So, we then attempt to find the correlation between selected performance
event rates and GPU power consumption employing different statistical ap-
proaches: Pearson, Spearman and Kendall Tau methods. While Pearson correla-
tion depicts linear relationships and Spearman represent monotonic behaviors,
the Kendall Tau mechanism usually gives deep statistical properties.

Figure 3 shows the power-performance correlation plots for every method on
each accelerator. This plot depicts the reduction from 45 to 16 high correlated
event rates.

Fig. 3. Pearson, Spearman and Kendall Tau methods for high correlated events.

The first charts row exposes the different statistical correlations for every
GPU. On the other hand, second row shows the absolute mean correlation in-
volving the two GPU for each performance rate. This chart gives an insight into
high performance-power correlated events through different NVIDIA GPU ar-
chitectures. It can be seen that these strong correlated events cover the whole ac-
celerator hardware functionality: execution system (active warps, inst executed,
warps launched), memory system (fb subp0 read sectors, fb subp0 write sectors,
fb subp1 write sectors, gld inst 32bit, gst inst 32bit) and caches system (l2 subp0
read sector misses, l2 subp0 total read sector queries, l2 subp0 total write sector
queries, l2 subp0 write sector misses, l2 subp1 total read sector queries, l2 subp1
total write sector queries, l2 subp1 write sector misses, tex0 cache sector queries).
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In order to identify redundant information, Figure 4 considers the events in
concern, illustrating the two Pearson correlation heatmaps across the selected
performance-power correlated events. In this case we use only the Pearson ap-
proach because it is more susceptible to outliers, and thus more robust. We also
include power data to analyze the strongest correlated event rates.

Fig. 4. Correlation heatmap for each GPU.

Strong correlations are expressed by foggy shadows and weak ones are rep-
resented by brighter shades. The diagonal terms show that each variable always
perfectly correlates with itself. The other components are the Pearsons correla-
tion coefficient between two performance event rates.

Last row of the lower triangular matrix (or last column of the upper one)
exposes a high correlation of the selected events with power consumption across
different GPU architectures.

As we aim to find the minimum set of hardware performance rates that highly
correlate with power, the selection procedure consists on picking an unique event
rate for each hardware functionality in the accelerator.

We chose inst executed, the total number of executed instructions per warp,
because it has a low correlation coefficient with memory and cache events and it
has high correlation with events in the same functional unit (active warps and
warps launched) in both GPUs. These considerations allow this event rate to
provide non-redundant information to the prediction model.

Furthermore, we pick gst inst 32bit, the total number of global store instruc-
tions that are executed by all the threads across all blocks. The event rate has
strong correlation with cache performance counters across GPU generations but

XXV Congreso Argentino de Ciencias de la Computación Río Cuarto, 14 al 18 de Octubre de 2019

-135-



it is not restricted to a DRAM memory subpartition since it counts every store
instruction in each parallel thread block.

Lastly, we select l2 subp0 read sector misses, the number of read requests
sent to DRAM from slice 0 of L2 cache, due to it has no correlation with
inst executed and a weak one with gst inst 32bit. L2 misses/Global transactions
correlation exists because of the intrinsic relationship in memory hierarchy in
all nowadays computer systems. As the selected event for memory subsystem
considers write transactions, we want to complement it by including read oper-
ations. L2 cache misses addresses this situation computing DRAM reads from
cache failures.

Unlike [21] we found a considerable contribution from L2 performance coun-
ters to power consumption (Pearson’s coefficients from 0.35 to 0.59).

To sum up inst executed, gst inst 32bit and l2 subp0 read sector misses with
an elapsed cycles sm normalization are the selected hardware performance coun-
ters for an eventual GPU cross-architectural power prediction scheme.

In a last phase, we focus on determining the influence of each selected event
rate in an prior power estimation model. Table 2 depicts statistical information
from a preliminary Ordinary Least Squares regression model.

Table 2. OLS Linear Regression statistical properties.

Event Rate Coefficient P-Value T-Value

inst executed per cycle 20.153 7.068e-16 9.451
gst inst 32bit per cycle 17.461 5.977e-14 8.605
l2 subp0 read sector misses per cycle 409.706 5.039e-11 7.289

P-values (probability values) and regression coefficients work together to ex-
plain which model relationships are statistically significant and the nature of
those links. The coefficients describe the mathematical connections between each
event rate and power consumption. Moreover, t-values gives an insight into the
coefficient standard error (in power units). Furthermore, the smaller the p-value,
the larger the absolute value of the t-value and the greater the evidence of im-
portance for the event.

The prior regression output shows that all the event rates are statistically
considerable because their p-values are minimal compared to the usual signifi-
cance level of 0.05 (less than 5%) and their corresponding t-values are greater
than zero.

In particular, inst executed per cycle represent beforehand the strongest event
rate, while gst inst 32bit per cycle and l2 subp0 read sector misses per cycle have
a slightly lower contribution to power.

For the results above, we confirm that all the selected performance events are
meaningful since variations in the event values are related to changes in power
consumption.
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6 Conclusions

This paper suggest a specific methodology for selecting hardware performance
counters in order to build a real time cross-architectural GPU power model.
Our work analyzes performance events on different GPU generations study-
ing performance-power correlation to grant an universal subset of events. This
counter selection process is even more difficult than in a classic CPU system due
to the complexity and variety of its hardware structure.

Our experimental results reveal that choosing a common high correlated
event for every hardware feature allows to generate an unique and robust data
input to any power estimation scheme. Consequently, the performance events
inst executed (compute), gst inst 32bit (memory), l2 subp0 read sector misses
(cache) and elapsed cycles sm (cycles rate) can clearly explain power fluctua-
tions in both GPU architectures.

In future work, we will develop a multi-architecture power model using com-
mon hardware performance counters to analyze and predict in real time the GPU
power consumption.
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