284 research outputs found

    Achievable Secrecy Rates of an Energy Harvesting Device

    Get PDF
    The secrecy rate represents the amount of information per unit time that can be securely sent on a communication link. In this work, we investigate the achievable secrecy rates in an energy harvesting communication system composed of a transmitter, a receiver and a malicious eavesdropper. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit and to optimize how much power should be used in order to improve security. Both full knowledge and partial knowledge of the channel are considered under a Nakagami fading scenario. We show that high secrecy rates can be obtained only with power and coding rate adaptation. Moreover, we highlight the importance of optimally dividing the transmission power in the frequency domain, and note that the optimal scheme provides high gains in secrecy rate over the uniform power splitting case. Analytically, we explain how to find the optimal policy and prove some of its properties. In our numerical evaluation, we discuss how the maximum achievable secrecy rate changes according to the various system parameters. Furthermore, we discuss the effects of a finite battery on the system performance and note that, in order to achieve high secrecy rates, it is not necessary to use very large batteries.Comment: Accepted for publication in IEEE Journal on Selected Areas in Communications (Mar. 2016

    Achievable Secrecy Rates of an Energy Harvesting Device with a Finite Battery

    Get PDF
    In this paper, we investigate the achievable secrecy rates in an Energy Harvesting communication system composed of one transmitter and multiple receivers. In particular, because of the energy constraints and the channel conditions, it is important to understand when a device should transmit or not and how much power should be used. We introduce the Optimal Secrecy Policy in several scenarios. We show that, if the receivers demand high secrecy rates, then it is not always possible to satisfy all their requests. Thus, we introduce a scheme that chooses which receivers should be discarded. Also, we study how the system is influenced by the Channel State Information and, in particular, how the knowledge of the eavesdropper's channel changes the achievable rates

    K-user Interference Channels: Achievable Secrecy Rate and Degrees of Freedom

    Full text link
    In this work, we consider achievable secrecy rates for symmetric KK-user (K≥3K \ge 3) interference channels with confidential messages. We find that nested lattice codes and layered coding are useful in providing secrecy for these channels. Achievable secrecy rates are derived for very strong interference. In addition, we derive the secure degrees of freedom for a range of channel parameters. As a by-product of our approach, we also demonstrate that nested lattice codes are useful for K-user symmetric interference channels without secrecy constraints in that they yield higher degrees of freedom than previous results.Comment: 5 pages. To appear at IEEE ITW 2009, Volos, June 200

    Physical Layer Security for Space Shift Keying Transmission with Precoding

    Get PDF
    We investigate the effect of transmitter side channel state information on the achievable secrecy rates of space shift keying. Through derivation of the gradient of the secrecy rate, we formulate an iterative algorithm to maximize the achievable secrecy rates. We also introduce two lower complexity signal design algorithms for different scenarios based on the number of antennas at the eavesdropper. Our results illustrate the effectiveness of the proposed precoding techniques in attaining positive secrecy rates over a wide range of signal to noise ratios. © 2016 IEEE

    To Obtain or not to Obtain CSI in the Presence of Hybrid Adversary

    Full text link
    We consider the wiretap channel model under the presence of a hybrid, half duplex adversary that is capable of either jamming or eavesdropping at a given time. We analyzed the achievable rates under a variety of scenarios involving different methods for obtaining transmitter CSI. Each method provides a different grade of information, not only to the transmitter on the main channel, but also to the adversary on all channels. Our analysis shows that main CSI is more valuable for the adversary than the jamming CSI in both delay-limited and ergodic scenarios. Similarly, in certain cases under the ergodic scenario, interestingly, no CSI may lead to higher achievable secrecy rates than with CSI.Comment: 8 pages, 3 figure

    Physical-Layer Security with Multiuser Scheduling in Cognitive Radio Networks

    Full text link
    In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of multiple eavesdroppers, where CUs transmit their data packets to CBS under a primary user's quality of service (QoS) constraint while the eavesdroppers attempt to intercept the cognitive transmissions from CUs to CBS. We investigate the physical-layer security against eavesdropping attacks in the cognitive radio network and propose the user scheduling scheme to achieve multiuser diversity for improving the security level of cognitive transmissions with a primary QoS constraint. Specifically, a cognitive user (CU) that satisfies the primary QoS requirement and maximizes the achievable secrecy rate of cognitive transmissions is scheduled to transmit its data packet. For the comparison purpose, we also examine the traditional multiuser scheduling and the artificial noise schemes. We analyze the achievable secrecy rate and intercept probability of the traditional and proposed multiuser scheduling schemes as well as the artificial noise scheme in Rayleigh fading environments. Numerical results show that given a primary QoS constraint, the proposed multiuser scheduling scheme generally outperforms the traditional multiuser scheduling and the artificial noise schemes in terms of the achievable secrecy rate and intercept probability. In addition, we derive the diversity order of the proposed multiuser scheduling scheme through an asymptotic intercept probability analysis and prove that the full diversity is obtained by using the proposed multiuser scheduling.Comment: 12 pages. IEEE Transactions on Communications, 201
    • …
    corecore