346 research outputs found

    Cloud Compute-and-Forward with Relay Cooperation

    Full text link
    We study a cloud network with M distributed receiving antennas and L users, which transmit their messages towards a centralized decoder (CD), where M>=L. We consider that the cloud network applies the Compute-and-Forward (C&F) protocol, where L antennas/relays are selected to decode integer equations of the transmitted messages. In this work, we focus on the best relay selection and the optimization of the Physical-Layer Network Coding (PNC) at the relays, aiming at the throughput maximization of the network. Existing literature optimizes PNC with respect to the maximization of the minimum rate among users. The proposed strategy maximizes the sum rate of the users allowing nonsymmetric rates, while the optimal solution is explored with the aid of the Pareto frontier. The problem of relay selection is matched to a coalition formation game, where the relays and the CD cooperate in order to maximize their profit. Efficient coalition formation algorithms are proposed, which perform joint relay selection and PNC optimization. Simulation results show that a considerable improvement is achieved compared to existing results, both in terms of the network sum rate and the players' profits.Comment: Submitted to IEEE Transactions on Wireless Communication

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Multi-Hop Wireless Optical Backhauling for LiFi Attocell Networks: Bandwidth Scheduling and Power Control

    Get PDF
    The backhaul of hundreds of light fidelity (LiFi) base stations (BSs) constitutes a major challenge. Indoor wireless optical backhauling is a novel approach whereby the interconnections between adjacent LiFi BSs are provided by way of directed line-of-sight (LOS) wireless infrared (IR) links. Building on the aforesaid approach, this paper presents the top-down design of a multi-hop wireless backhaul configuration for multi-tier optical attocell networks by proposing the novel idea of super cells. Such cells incorporate multiple clusters of attocells that are connected to the core network via a single gateway based on multi-hop decode-and-forward (DF) relaying. Consequently, new challenges arise for managing the bandwidth and power resources of the bottleneck backhaul. By putting forward user-based bandwidth scheduling (UBS) and cell-based bandwidth scheduling (CBS) policies, the system-level modeling and analysis of the end-to-end multi-user sum rate is elaborated. In addition, optimal bandwidth scheduling under both UBS and CBS policies are formulated as constrained convex optimization problems, which are solved by using the projected subgradient method. Furthermore, the transmission power of the backhaul system is opportunistically reduced by way of an innovative fixed power control (FPC) strategy. The notion of backhaul bottleneck occurrence (BBO) is introduced. An accurate approximate expression of the probability of BBO is derived, and then verified using Monte Carlo simulations. Several insights are provided into the offered gains of the proposed schemes through extensive computer simulations, by studying different aspects of the performance of super cells including the average sum rate, the BBO probability and the backhaul power efficiency (PE).Comment: 36 pages, 21 figures, 1 tabl
    corecore