27 research outputs found

    Resource Allocation in a MAC with and without security via Game Theoretic Learning

    Full text link
    In this paper a KK-user fading multiple access channel with and without security constraints is studied. First we consider a F-MAC without the security constraints. Under the assumption of individual CSI of users, we propose the problem of power allocation as a stochastic game when the receiver sends an ACK or a NACK depending on whether it was able to decode the message or not. We have used Multiplicative weight no-regret algorithm to obtain a Coarse Correlated Equilibrium (CCE). Then we consider the case when the users can decode ACK/NACK of each other. In this scenario we provide an algorithm to maximize the weighted sum-utility of all the users and obtain a Pareto optimal point. PP is socially optimal but may be unfair to individual users. Next we consider the case where the users can cooperate with each other so as to disagree with the policy which will be unfair to individual user. We then obtain a Nash bargaining solution, which in addition to being Pareto optimal, is also fair to each user. Next we study a KK-user fading multiple access wiretap Channel with CSI of Eve available to the users. We use the previous algorithms to obtain a CCE, PP and a NBS. Next we consider the case where each user does not know the CSI of Eve but only its distribution. In that case we use secrecy outage as the criterion for the receiver to send an ACK or a NACK. Here also we use the previous algorithms to obtain a CCE, PP or a NBS. Finally we show that our algorithms can be extended to the case where a user can transmit at different rates. At the end we provide a few examples to compute different solutions and compare them under different CSI scenarios.Comment: 27 pages, 12 figures. Part of the paper was presented in 2016 IEEE Information theory and applicaitons (ITA) Workshop, San Diego, USA in Feb. 2016. Submitted to journa

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Bayesian Game Formulation of Power Allocation in Multiple Access Wiretap Channel with Incomplete CSI

    Full text link
    In this paper, we address the problem of distributed power allocation in a KK user fading multiple access wiretap channel, where global channel state information is limited, i.e., each user has knowledge of their own channel state with respect to Bob and Eve but only knows the distribution of other users' channel states. We model this problem as a Bayesian game, where each user is assumed to selfishly maximize his average \emph{secrecy capacity} with partial channel state information. In this work, we first prove that there is a unique Bayesian equilibrium in the proposed game. Additionally, the price of anarchy is calculated to measure the efficiency of the equilibrium solution. We also propose a fast convergent iterative algorithm for power allocation. Finally, the results are validated using simulation results.Comment: 7 Pages, 2 Figures, submitted for possible publicatio

    QoS-Aware Enhanced-Security for TDMA Transmissions from Buffered Source Nodes

    Get PDF

    Physical layer security in wireless networks: intelligent jamming and eavesdropping

    Get PDF
    This work aims at addressing two critical security issues residing in the physical layer of wireless networks, namely intelligent jamming and eavesdropping. In the first two chapters we study the problem of jamming in a fixed-rate transmission system with fading, under the general assumption that the jammer has no knowledge about either the codebook used by the legitimate communication terminals, or the source’s output. Both transmitter and jammer are subject to power constraints which can be enforced over each codeword (peak) or over all codewords (average). All our jamming problems are formulated as zero-sum games, having the probability of outage as pay-off function and power control functions as strategies. We provide a comprehensive coverage of these problems, under fast and slow fading, peak and average power constraints, pure and mixed strategies, with and without channel state information (CSI) feedback. Contributions to the eavesdropping problem include a novel feedback scheme for transmitting secret messages between two legitimate parties, over an eavesdropped communication link, presented in Chapter 4. Relative to Wyner’s traditional encoding scheme, our feedback-based encoding often yields larger rate-equivocation regions and achievable secrecy rates. More importantly, by exploiting the channel randomness inherent in the feedback channels, our scheme achieves a strictly positive secrecy rate even when the eavesdropper’s channel is less noisy than the legitimate receiver’s channel. In Chapter 5 we study the problem of active eavesdropping in fast fading channels. The active eavesdropper is a more powerful adversary than the classical eavesdropper. It can choose between two functional modes: eavesdropping the transmission between the legitimate parties (Ex mode), and jamming it (Jx mode) – the active eavesdropper cannot function in full duplex mode. We consider two scenarios: the best-case scenario, when the transmitter knows the eavesdropper’s strategy in advance – and hence can adaptively choose an encoding strategy – and the worst-case scenario, when the active eavesdropper can choose its strategy based on the legitimate transmitter-receiver pair’s strategy. For the second scenario, we introduce a novel encoding scheme, based on very limited and unprotected feedback – the Block-Markov Wyner (BMW) encoding scheme – which outperforms any schemes currently available

    Achievable Sum-rate of variants of QAM over Gaussian Multiple Access Channel with and without security

    Full text link
    The performance of next generation wireless systems (5G/6G and beyond) at the physical layer is primarily driven by the choice of digital modulation techniques that are bandwidth and power efficient, while maintaining high data rates. Achievable rates for Gaussian input and some finite constellations (BPSK/QPSK/QAM) are well studied in the literature. However, new variants of Quadrature Amplitude Modulation (QAM) such as Cross-QAM (XQAM), Star-QAM (S-QAM), Amplitude and phase shift keying (APSK), and Hexagonal Quadrature Amplitude Modulation (H-QAM) are not studied in the context of achievable rates for meeting the demand of high data rates. In this paper, we study achievable rate region for different variants of M-QAM like Cross-QAM, H-QAM, Star-QAM and APSK. We also compute mutual information corresponding to the sum rate of Gaussian Multiple Access Channel (G-MAC), for hybrid constellation scheme, e.g., user 1 transmits using Star-QAM and user 2 by H-QAM. From the results, it is observed that S-QAM gives the maximum sum-rate when users transmit same constellations. Also, it has been found that when hybrid constellation is used, the combination of Star-QAM \& H-QAM gives the maximum rate. In the next part of the paper, we consider a scenario wherein an adversary is also present at the receiver side and is trying to decode the information. We model this scenario as Gaussian Multiple Access Wiretap Channel (G-MAW-WT). We then compute the achievable secrecy sum rate of two user G-MAC-WT with discrete inputs from different variants of QAM (viz, X-QAM, H-QAM and S-QAM).It has been found that at higher values of SNR, S-QAM gives better values of SSR than the other variants. For hybrid inputs of QAM, at lower values of SNR, combination of APSK and S-QAM gives better results and at higher values of SNR, combination of HQAM and APSK gives greater value of SSR.Comment: 11 Figures, two tables. Accepted for publication in IEEE International Conference on Signal Processing and Computer Vision (SPCV-2023
    corecore