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QoS-Aware Enhanced-Security for TDMA
Transmissions from Buffered Source Nodes

Ahmed El Shafie, Trung Q. Duong, and Naofal Al-Dhahir

Abstract—This paper proposes a cross-layer design to secure a
set of buffered legitimate source nodes wishing to communicate
with a common destination node using a time-division multiple-
access scheme. The users’ assignment probabilities to the time
slots are optimized to satisfy a certain quality-of-service (QoS)
requirement for all the legitimate source nodes. To further
improve the system security, we propose beamforming-based
cooperative jamming schemes subject to the availability ofthe
channel state information (CSI) at the legitimate nodes. Wederive
closed-form expressions for the instantaneous secrecy rate for
each scheme as well as the secrecy outage probability. Moreover,
we derive the secrecy stable-throughput and delay-requirement
regions. In our proposed scheme, if a node is not selected
for data transmission, it is a cooperative jamming node. We
impose an average transmit power constraint on each source
node. We investigate the cases where a global CSI is assumed
at the legitimate nodes and where there is no eavesdropper’s
CSI. The case where there is no CSI at the jamming nodes is
also investigated and a new scheme is proposed. Our proposed
jamming schemes achieve significant increases in the secure
throughput over existing schemes from the literature and over
the no-jamming scheme.

Index Terms—Cooperative jamming, queues, secrecy rate.

I. I NTRODUCTION

Secure communications in an information-theoretic sense
was first investigated in the seminal work of Wyner [2] which
is currently well-known as the physical (PHY) layer security.
In PHY-layer security, the system security is measured by the
secrecy capacity of the link connecting the legitimate parties,
which is the maximum transmission rate that can be achieved
without information leakage to an eavesdropping node.

The instantaneous secrecy rate can be efficiently increased
in two ways: (1) by improving the signal-to-noise ratio (SNR)
of the legitimate receiver and/or (2) by reducing the SNR
of the eavesdropper (e.g. by adding controlled artificial noise
(AN) or interference). Hence, interference emerges as a vi-
able resource for enhancing wireless security. The legitimate
communication partners can cooperate to increase the noise
level (interference) of the eavesdropper link and ensure higher
secure communication rates. This idea has already appeared
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in the PHY-layer security literature under the name of AN
[3]–[6] or cooperative jamming [7]. In [4], [5], the problem
of secure communication with multi-antenna transmission in
fading channels was investigated. The source node simultane-
ously transmits an information bearing signal to the intended
destination node and AN signals to confuse the eavesdropping
node. A comprehensive survey of PHY-layer security in multi-
user wireless networks including jamming techniques is found
in [8].

A. Related Work

The single-jammer selection problem was investigated in
many works, e.g., [9]. The authors of [9] proposed various
jamming schemes based on the available channel state in-
formation (CSI) at the legitimate nodes. In [10] and [11],
the authors assumed that a transmitter communicates with
its destination in the presence of a multi-antenna cooperative
jammer and an eavesdropper. The cooperative jammer was
assumed to transmit AN signals to maximize the instantaneous
secrecy rate. The eavesdropper’s CSI was assumed known at
the legitimate nodes. The optimal beamforming (BF) vector
and power allocation at the cooperative jammer were designed
to increase the system instantaneous secrecy rate. Using the
same jamming BF technique as in [10], the authors of [12]
considered the presence of a set of amplify-and-forward re-
lay nodes which helps in forwarding the source packets in
addition to jamming the eavesdropper. The authors assumed
that the eavesdropper’s CSI is not available at the legitimate
nodes. However, the above works did not derive closed-form
expressions for important performance metrics, such as the
secrecy outage probability.

In [13], a modified slotted-ALOHA protocol is proposed
where each legitimate transmitter either transmits its data
or acts as a cooperative jammer according to a message
transmission probability. In [14], the authors study a single-
input, multi-output, multi-eavesdropper wiretap channelwith
multiple friendly single-antenna cooperative jammers. Random
networks are considered where the cooperative jammers and
the eavesdroppers are distributed according to independent
two-dimensional homogeneous Poisson point processes (PPP).
To confound the eavesdroppers, an opportunistic jammer se-
lection scheme is proposed, where the cooperative jammers
whose channels are nearly orthogonal to the legitimate channel
are selected to transmit independent and identically distributed
(i.i.d.) Gaussian jamming signals. In [15], the authors in-
vestigated the secure AN-aided multi-antenna transmission
in multiple-input single-output (MISO) slow fading channels.
The eavesdroppers are distributed as PPP. The authors aimedat
maximizing the secrecy throughput subject to a certain secrecy
outage constraint.
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The authors of [16] investigated PHY-layer security for
5G networks and discussed three most promising technolo-
gies: heterogenous networks, massive multiple-input multiple-
output, and millimeter wave. In [17], the authors considered
the problem of secure communication with multi-antenna
transmission in fading channels with single-antenna legitimate
receive node and multiple single-antenna eavesdropping nodes.
The transmitting node simultaneously transmits a data signal
to the legitimate receiver and an AN signal to confuse the
eavesdroppers. An analytical closed-form expression of an
achievable secrecy rate was obtained and the transmit power
allocation between the data and the AN signals was optimized
to maximize the instantaneous secrecy rate. The authors inves-
tigated both cases of noncolluding and colluding eavesdrop-
pers. In [18], an on-off transmission scheme was proposed for
wiretap channels with outdated CSI. The authors considered
the outdated CSI from the legitimate receiver under two dis-
tinct scenarios, depending on whether or not the outdated CSI
from the eavesdropper is known at the legitimate transmitter.
New closed-form expressions for the transmission probability,
the connection outage probability, the secrecy outage probabil-
ity, and the reliable and secure transmission probability were
derived to characterize the achievable system’s performance.
The authors of [19] investigated the secure transmission design
in practical scenarios by considering channel estimation errors
at the legitimate receiver and investigating both fixed- and
variable-rate transmissions.

In [20], the authors proposed a new secure transmis-
sion scheme in a multiple-input multiple-output multiple-
eavesdropper (MIMOME) wiretap channel. The legitimate
transmitter adopts transmit antenna selection (TAS) to choose
the antenna that maximizes the instantaneous SNR at the legiti-
mate receiver. Both the legitimate receiver and the eavesdrop-
per adopt maximal-ratio combining (MRC) to combine the
received signals from the legitimate transmitter. The authors
assumed that the CSI during the TAS process is outdated and
proposed a new transmission scheme to mitigate the effect of
the outdated CSI on the wiretap codes design at the legitimate
transmitter. Moreover, they investigated the impact of thespa-
tial correlation at the receiver. It was shown that the outdated
TAS reduces the secrecy diversity order. Moreover, antenna
correlation improves the secrecy performance in the low SNR
regime but degrades the secrecy performance in the moderate
and high SNR regimes. In [21], the authors investigated PHY-
layer security in an underlay cognitive radio (CR) network
in the presence of randomly distributed eavesdroppers. For
different CSI knowledge at the transmitting node, the authors
proposed four transmission protocols to improve the secure
transmission in the CR network. The optimal design parameter
for each transmission protocol was obtained by solving a
constrained optimization problem that maximizes the secrecy
throughput subject to both security and reliability constraints.

All the above-mentioned papers did not consider the impact
of cross-layer (i.e. medium access control (MAC) and network
layers along with the PHY layer) design on the security of
the system and users’ quality-of-service (QoS) requirements.
In this paper, we consider a set of buffered source nodes
using a time-division multiple-access (TDMA) scheme to

communicate with their common destination in the presence
of an eavesdropper. We assume a slotted-time system in which
the time is partitioned into slots. In a given time slot, one of the
source nodes is chosen for data transmission. If a node is not
assigned for data transmission, then it is a potential cooperative
jammer. To satisfy the legitimate user QoS requirements, we
optimize the fraction of time slots assigned to each legitimate
user. We emphasize the practical relevance of the work
presented in this paper. Our model deals with the uplink
scenario of a TDMA network. As argued in the wireless
communication literature [22], [23], TDMA is widely used in
many networks such as the GSM cellular networks, Bluetooth
personal area networks, IEEE 802.16a WiMax broadband
wireless access networks, and more. Therefore, by assuming
the general framework of TDMA networks, our work can be
applied to any TDMA-based network.

B. Contributions

The contributions of this paper are summarized as follows
• We propose a three-layer optimization approach to en-

hance the security of the multiple-access system under
investigation. That is, we optimize the PHY-layer by
increasing the probability of secure transmissions. This
is realized through AN injection in the direction of the
eavesdropper and optimal allocation of the average power
assigned to data transmission and that assigned to AN
transmission to satisfy a certain average power constraint.
Then, we optimize the MAC and network layers by
designing the fraction of time slots to satisfy the queue-
stability and user-QoS constraints.

• We investigate two types of QoS-constrained optimization
problems. More specifically, we derive the secrecy stable-
throughput region of the network, which characterizes the
maximum stable secrecy throughput of each user such
that all users’ queues are stable. We show analytically
that the optimal time slot assignment is a function of
the users’ secrecy outage probabilities. In addition, we
investigate the queueing delay of the users and derive a
closed-form expression for the average queueing delay
of the queues. We characterize the delay-requirement
region which determines the minimum achievable secure
queueing delay of a node given certain delay requirements
for the other nodes in the network. In this case, the
optimal time slot assignment is a function of the users’
secrecy outage probabilities, average arrival rates to the
queues, and the delay requirement of each user.

• Through improving the instantaneous secrecy rate and
reducing the secrecy outage probability, we can better
satisfy the QoS requirements of the users. Hence, we
propose and compare BF-based cooperative jamming
schemes that depend on the availability of CSI at the
legitimate nodes and the number of jamming nodes
participating in confounding the eavesdropper. Each of
the jamming schemes results in a different set of secrecy
outage probabilities for the legitimate users which vary
the time-assignment probabilities. We derive the instanta-
neous secrecy rate and secrecy outage probability under
each of our proposed schemes.
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Fig. 1. Network Model. Each source node is equipped with a buffer to store
its own data traffic. The number of source nodes isM. All nodes are equipped
with a single antenna.

Notation: (·)∗ denotes complex-conjugate operation.(·)⊤
denotes vector transpose.‖·‖ denotes the Euclidean norm of
a vector.| · | denotes either absolute value or set cardinality
depending on the context in which it is used. The function
min(·, ·) (max(·, ·)) returns the minimum (maximum) among
the values enclosed between brackets.E{·} denotes statistical
expectation.0 denotes the all-zero matrix/vector and its size is
understood from the context.⌈·⌉ is the ceil of the argument.
The factorial of a non-negative integern is denoted byn!.
Γ(·) is the Gamma function.Ei(·) is the exponential integral
function. A list of the key variables is given in Table I.

II. SYSTEM MODEL AND ASSUMPTIONS

Assume a set ofM source nodes sharing the same fre-
quency band and wishing to communicate with a common
destination (base-station) in the presence of an eavesdropper
as shown in Fig. 1. The source nodes are labeled1, 2, . . . ,M.
The eavesdropper (Eve) and the destination (Bob) are denoted
by E and B, respectively. All nodes are assumed to be
equipped with one antenna.

We assume Rayleigh flat-fading channels. The channel
coefficient between Node
n1 ∈ {1, 2, . . . ,M,B,E} and Node n2 ∈
{1, 2, . . . ,M,B,E}, denoted byhn1,n2 , remains constant
during a time slot, but changes identically and independently
from one time slot to another. Each channel coefficient
is modeled as a circularly-symmetric Gaussian random
variable with zero mean and unit variance. The thermal
noise at a receiving node is modeled as an additive white
Gaussian noise (AWGN) with zero mean and varianceκ.
We assume that the time is slotted into durations ofT
seconds [22], [23]. In a given time slot, Transmitterk ∈ T
(which we refer to asAlice), whereT = {1, 2, . . . ,M}, is
chosen for data transmission with probability0 ≤ ωk ≤ 1.
Thus,

∑M
k=1 ωk ≤ 1 [22], [23]. The time slot assignment

probabilities (ω1, ω2, . . . , ωM) are optimized to satisfy the
QoS of the source nodes, such as queue stability or certain
queueing delay requirements for each user. This will be
discussed in detail in Section III.

A. Queue Model and Node Transmit Power

The set of all source nodesexcluding the one assigned to
the time slot for data transmission (i.e. Nodek) is denoted
by J = {1, 2, . . . , k − 1, k + 1, . . . ,M}, where k /∈ J .
We assume that Nodek maintains a bufferQk to store its
incoming traffic. The arrivals at Nodek are Bernoulli random
variables with meanλk packets/slot [22]. This model is generic
as it includes the case of source nodes that may participate in
jamming Eve from one time slot to another, and the case of a
jamming node which ispermanently dedicated for jamming
Eve whenever needed. Ifλk = 0, Node k is a potential
jamming node that participates in confusing Eve in every time
slot. We assume that the average transmit power employed
by Node k ∈ T for information transmission in each time
slot is PI Watts/Hz. The AN signals used in jamming are
modeled as zero-mean circularly-symmetric complex Gaussian
random variables [13], [27]. The average jamming power in
each time slot is constrained byPJ Watts/Hz. Moreover,
we impose an average transmit powerP (averaged across
time slots) on each source node. Hence, the source nodes
should distribute their average transmit powersthroughout the
network operation(averaged across the time slots) between
data and AN transmissions to satisfy the QoS requirements.

B. Data and Secrecy Rates

We assume that the time needed for channel estimation of all
links and transmission of control signals isτ < T . Thus, the
data transmission time of a legitimate node isT−τ . Assuming
that the packet size of a transmitter isb bits and the channel
bandwidth isW Hz, the target secrecy rate isR = R◦

1− τ
T

=
b

(T−τ)W with R◦ = b
WT

. The secrecy outage happens when
the target secrecy rate exceeds the instantaneous secrecy rate.
Letting Rn1,n2 denote the channel rate of then1 − n2 link,
the instantaneous secrecy rate of Transmitterk is given by [9],
[10], [12], [28]

Rs,k= [Rk,B − Rk,E]
+ ≤ Rk,B (1)

where [·]+ = max(·, 0) denotes the maximum between the
enclosed values in brackets andzero. Since we assume fixed-
rate transmissions, if the target secrecy rate, denoted byR, is
greater than thek − B link rate Rk,B, then it is greater than
the instantaneous secrecy rateRs,k sinceRk,B ≥ Rs,k. Hence,
the data cannot be decoded reliably and securely at Bob. For
this reason, we assume that ifR exceeds the direct link rate,
the node assigned for data transmission remains idle to save
its power. We define two types of outage events

1) Connection outage: The connection outage is defined
as the event that the rate of the Alice-Bob link is below
the target secrecy rateR.

2) Secrecy outage: The secrecy outage is defined as the
event that the instantaneous secrecy rate of the Alice-
Bob link is below the target secrecy rateR.

C. Wiretap Code Design

Consider the scenario that thekth Alice transmits a data
packet to Bob. In a given time slott ∈ {1, 2, 3, . . .}, Alice
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adaptively adjusts her transmission rateRk,B to be arbitrarily
close to the link rate such that no outage events occur. We
assume that Alice uses a codebookC(2nRk,B , 2nR, n) where
R is the target secrecy rate (i.e. packet size in bits/sec/Hz), n
is the codeword length,2nRk,B is the size of the codebook, and
2nR is the number of confidential messages to transmit. The
2nRk,B codewords are randomly grouped into2nR bins. To
transmit confidential messagew ∈ {1, . . . , 2nR}, Alice uses a
stochastic encoder to randomly select a codeword from binw
and transmit it over the channel. Since the instantaneous CSI
for the Alice-Eve link is not available at Alice, we assume the
encoder will set a fixed value for the intended positive secrecy
rateR (which represents the spectral efficiency of one packet
transmission).

D. High-Level Framework

Our objective is to securely transmit the data packets of a set
of buffered nodes in the presence of a potential eavesdropper.
The high-level framework we adopt in this paper consists of
three main parts

• Secure Transmission: We propose a set of jamming
schemes based on the availability of the CSI at the
legitimate nodes and derive the instantaneous secrecy
rate and secrecy outage probability of each scheme. The
jamming schemes differ in the CSI requirements at nodes.

• Nodes Access and QoS:We propose a TDMA access
scheme where one of the source nodes is selected for data
transmission in a given time slot with certain probability.
The time slot assignment probabilities are optimized to
satisfy certain QoS requirements for the legitimate users.

• Queueing Analysis:We investigate the queue evolutions
of the source nodes and derive several important network-
layer metrics such as queue stability, maximum secure
stable throughput, and the queueing delay of the source
node. Furthermore, we investigate the queueing delay re-
quirement region, which defines the minimum achievable
delay at a source node when the requirements of the other
nodes are specified.

III. QUEUEING ANALYSIS

In this section, we analyze the Markov chain of the le-
gitimate nodes queues. In addition, we provide close-form
expressions for the average queueing delays.

A. Queue Stability

A fundamental performance measure of a communication
network is the stability of its queues [22]. We aim at charac-
terizing the secrecy stable-throughput region of the considered
system which describes the theoretical limit on rates that can
be pushed through the system while maintaining the stability
of the queues. We are interested in the queues sizes. More
rigourously, stability can be defined as follows [29].

Definition: A queue is said to be stable if and only if its
probability of being empty remains non-zero for timet that
grows to infinity [29]. That is, queueQk is stable, if

lim
y→0

lim
t→∞

Pr{Qt
k = y} > 0. (2)

If the arrival and service processes are strictly stationary, then
we can apply Loynes’ theorem to check for stability conditions
[22], [30]. This theorem states that if the arrival process and
the service process of a queue are strictly stationary, and the
average service rate is greater than the average arrival rate of
the queue, then the queue is stable.

B. Mean Service Rates

Let Pk,B = Pr{Rs,k ≤ R} denote the secrecy outage
probability of thekth user transmission. A packet at the head
of Qk leaves the system securely and reliably if Nodek is
selected for data transmission and there is no secrecy outage.
Hence, the mean secure service rate (i.e. the average number
of securely and correctly received packets at Bob from Node
k) of the kth queue is given by

µk = ωk(1− Pk,B) (3)

which is also defined as the probability that thekth transmitter
is allocated to the time slot and that its transmission is decoded
securely at Bob. We emphasize thatµk is a function of 1)ωk,
which represents the fraction of time slots that is allocated
to User k for data transmission, and 2) the complement of
the secrecy outage probability,1 − Pk,B. Hence, for a given
ωk, to increase the service rate of QueueQk (i.e. increase the
secure throughput of Userk), the secrecy outage probability
Pk,B should be reduced. The outage probabilityPk,B can be
reduced by increasing the secrecy rate of the transmission.
From (1), the secrecy rate increases with decreasing Eve’s
rate. Hence, in the following section, we propose a BF-based
cooperative jamming scheme where the jammers design their
BF weights to decrease Eve’s rate while completely removing
the interference at Bob.

C. QueueQk Markov Chain

In a given time slot, each node either transmits at most
one data packet, receives at most one data packet (due to
the Bernoulli arrival model), or operates as a jamming node.
Hence, the Markov chain of a queue is modeled as abirth-
deathprocess. ForQk, the probability of moving from State
n ∈ {1, 2, . . . ,∞} to Staten − 1 is given by the probability
of having no arrived packets at the queue, which is given by
1−λk, multiplied by the probability of a packet being served
securely, which is given byµk. Moreover, the probability of
moving from Staten to Staten+1 is the probability of having
an arrived packet in the given time slot, which is given by
λk, multiplied by the probability that the packet at the queue
head cannot be decoded securely at Bob, which is given by
1−µk. Mathematically, the probability of moving one packet
up and the probability of moving one packet down are given,
respectively, by

pk,up = λk (1− µk), pk,down = (1− λk) µk (4)

Analyzing the Markov chain ofQk, the probability of the
queue being in Staten ≥ 0, denoted byǫk,n, is given by

ǫk,n = ǫk,0β
n
k , ǫk,0 = 1−

λk

µk

(5)

where βk = pk,up/pk,down and λk < µk represents the
necessary condition to maintain the queueQk stable.
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Symbol Description Symbol Description

M # source nodes T Set of source nodes

J Set of jamming nodes T andW Slot duration and channel bandwidth

R Target secrecy rate P Average transmit power by a node

PI Average transmit information power PJ Average transmit jamming power

κ Thermal noise variance ωk Probability of assigning Userk to a time slot

Qk Queue (buffer) at Userk µk Mean service rate ofQk

λk Mean arrival rate atQk M− 1 Cardinality of the potential jamming set

Rn1,n2 Channel rate of then1 − n2 link Rs,k Instantaneous secrecy rate of Transmitterk

hn1,n2 Channel coefficient between θn1,n2 = |hn1,n2 |
2 Channel gain between Noden1 and Noden2

Noden1 and Noden2

Pk,B Probability of secrecy outage PnoEve
k,B Probability of secrecy outage

of the k − B link of the k − B link when there is no Eve

TABLE I
L IST OF KEY VARIABLES.

D. Queueing Delay

Using Little’s theorem, the average queueing delay atQk is

Dk =
1− λk

µk − λk

(6)

with µk > λk. The average queueing delay of Nodek is pro-
portionally decreasing withµk and proportionally increasing
with the arrival rateλk.

If we aim at minimizing the nodes’ queueing delays, we
should either decrease the arrival rates{λk}Mk=1 or increase
the service rates{µk}Mk=1. The arrival rate at Nodek is
uncontrollable and is a given parameter from the upper layers.
On the other hand, the service rateµk is controllable by an
appropriate design ofωk and (1 − Pk,B). Thus, we need to
optimizeωk to satisfy the users’ QoS, which will be designed
in Section V, and to minimize/reducePk,B (or equivalently,
improve/increase1−Pk,B ) to further enhance the system se-
curity and nodes’ throughput. The outage probabilityPk,B can
be decreased by increasing the secrecy rate of the transmission.
Hence, we propose a BF-based cooperative jamming scheme
in the following section. We also propose two variations of
the proposed jamming scheme based on the availability of
channel CSI at the legitimate nodes. We first investigate the
case of perfect CSI at the legitimate nodes including Eve’s
CSI. Then, we investigate the cases of no Eve’s CSI at the
legitimate nodes and no jammers-Bob links’ CSI.

IV. PROPOSEDJAMMING SCHEMES

To improve the QoS of the legitimate users described in the
previous section, we propose a BF-based jamming schemes to
reduce the secrecy outage probabilities of the users’ transmis-
sions. This part represents the PHY-layer optimization of the
proposed formulation to enhance the system security. That is, it
considers the PHY structure of the network under investigation

and allows the legitimate nodes to transmit the jamming signal
to enhance the instantaneous secrecy rates.

In the following subsections, we investigate the proposed
jamming techniques which differ in terms of their CSI re-
quirements. Moreover, the instantaneous secrecy rate and
secrecy outage probability change from one jamming scheme
to another.

A. Optimal-BF Jamming

In this scheme, we assume that the set of nodes inJ create
a cooperative beamformer jamming signal to maximize the
instantaneous secrecy rate of the data transmitting nodek
under the condition that the interference of the jamming signal
is canceled at Bob. Global CSI is assumed at all nodes as in
[10]. This assumption is valid when Eve is an active node in
the network (or a non-hostile node that communicates with
the destination (Bob) from one time to another).1 A similar
jamming scheme was proposed in, e.g., [10], [12], with a
different network setting. In our scenario, the jamming set
changes from one time slot to another. More importantly, we
derive closed-form expressions for the optimal weight vector
used at the cooperative jammers, the secrecy rate, and the
secrecy outage probability.

We assume that the source nodes are close to each other
so that they can share the same Gaussian noise symbols using
a short range signaling that is completely hidden from the

1This is a common assumption in the PHY-layer security literature [8]–[10].
It is justified by the fact that Eve can be anotheractive node in the network
that communicates with Bob. Accordingly, Eve’s CSI can be estimated at
all nodes through her transmitted pilot signals which are also received by
Bob. Moreover, different nodes can share a certain link CSI through channel
feedback.
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eavesdropper as in, e.g., [12] and the references therein.2 The
source nodes inJ confound Eve using the same Gaussian
noise symbols but with different weight coefficients. The
weights are chosen to null the interference at Bob while
maximizing the interference at the eavesdropper’s receiver. For
given channel realizations, when the signal-to-interference-
plus-noise ratio (SINR) at the legitimate destination is greater
than that at the eavesdropper, the instantaneous secrecy rate
of Nodek is given by

Rs,k=log2

(

1+
PIθk,B

κ

)

− log2

(

1+
PIθk,E

κ+PJ |
∑

j∈J g∗j hj,E|2

) (7)

where θk,B

κ
>

θk,E

κ+PJ |
∑

j∈J g∗
j hj,E|2

is the condition to achieve

a non-zero secrecy rate. Moreover,θk,j = |hk,j |2 denotes the
channel gain (i.e. squared-magnitude of the channel coefficient
hk,j) between Nodek ∈ {1, 2, 3, . . . ,M} and Nodej ∈
{E,B}, andg = [g1, . . . , gk−1, gk+1, . . . , gM]⊤ ∈ C(M−1)×1

is the BF weight vector withgj as the weight used by
nodej ∈ J . The jamming transmit power by Nodej ∈ J is
given by

Pj = |gj |
2
PJ (8)

Hence, the average transmit power used in jamming by Node
j is given by

E{Pj} = E{|gj |
2}PJ (9)

For given channel realizations, if the SINR at the eavesdrop-
per’s receiver is greater than that at the legitimate destination,
i.e., PIθk,B

κ
≤ PIθk,E

κ+PJ |
∑

j∈J g∗
j hj,E|2

, the instantaneous secrecy
rate of Userk is zero. That is,Rs,k = 0, which means that
there is no secure communications since the ability of Eve to
decode the data is higher than Bob’s ability. Combining the
two above-mentioned cases, the instantaneous secrecy rateof
Nodek, Rs,k, is given by

Rs,k =

{

Rs,k if
PIθk,B

κ
>

PIθk,E

κ+PJ |
∑

j∈J g∗
j
hj,E|2

0 if
PIθk,B

κ
≤

PIθk,E

κ+PJ |
∑

j∈J g∗
j
hj,E|2

(10)

Maximizing Rs,k over the weight vectorg is equivalent

to minimizing log2

(

1 +
PIθk,E

κ+PJ |
∑

j∈J g∗
j hj,E|2

)

. Since the log-
arithm function is a monotonically increasing function, the
problem reduces to the maximization of the following objec-
tive function

max :
g

Rs,k⇒min :
g

PIθk,E

κ+PJ |
∑

j∈J g∗jhj,E|2
⇒max :

g

|
∑

j∈J

g
∗
jhj,E|

2

(11)
Let hE = [h1,E, . . . , hk−1,E, hk+1,E, . . . , hM,E]

⊤ ∈
C(M−1)×1 denote the channel coefficient vector from
the legitimate source nodes inJ to Eve and hB =
[h1,B, . . . , hk−1,B, hk+1,B, . . . , hM,B]

⊤ ∈ C(M−1)×1 de-
note the channel coefficient vector from the source

2The AN can be a pseudo-random signal which is perfectly knownat the
source nodes but not at the eavesdropper. This can be efficiently realized
by using a short secret key as seed information for the Gaussian pseudo-
random sequence generator used for generating the noise sequences, where
the legitimate nodes regularly change the key seeds to maintain the sequence
secured from the eavesdropper [27].

nodes in J to Bob. The optimal weight vectorg =
[g1, . . . , gk−1, gk+1, . . . , gM]⊤ that maximizes |g∗hE|2 =
|∑j∈J g∗jhj,E|2 subject to (s.t.) the normalization constraint
‖g‖2 = 1 and the total cancellation of the interference at Bob,
i.e., |g∗hB| = 0, can be computed by solving the following
constrained optimization problem

max :
g

|g∗
hE|

2

s.t. |g∗
hB|=0

‖g‖2=1

(12)

The optimal weight vectorg must null the interference at Bob.
Thus, to solve the optimization problem in (12), the optimal
weight vector is orthogonal tohB and should belong to a
subspace that is orthogonal to the channel vectorhB. Let H
denote the orthogonal complement subspace of the subspace
spanned byhB. After that, we choose the weight vector that
belongs toH and maximizes the term|g∗hE|2. Using the
closest point theorem [31], the optimal weight vector should
be the orthogonal projection ofhE onto the subspaceH. From
the last constraint in (12), the optimal weight vector has a unit
norm. Hence, the projection vector is divided by its magnitude.
Accordingly, the optimal weight vector is given by

g =
ΨhE

‖ΨhE‖
(13)

where Ψ is the projection matrix which is given byΨ =
IM−1− hBhB

∗

‖hB‖2 , andIM−1 denotes the identity matrix whose
size isM− 1×M− 1.

The secrecy outage probability of the BF-based jamming
scheme with perfect CSI is given by

Pk,B=Pr

{

R≥ log2 (1+γIθk,B)−log2

(

1+
γIθk,E

1+γJ |
∑

j∈J g∗jhj,E|2

)}

(14)

whereγI = PI/κ andγJ = PJ/κ.

Lemma 1. The no secrecy outage probability (i.e. complement
probability of secrecy outage) of the optimal-BF jamming
scheme with perfect CSI at the legitimate nodes is given by

1−Pk,B = (1− P
noEve
k,B )

F
(

M− 3, 1+2R

γJ

)

+γJF
(

M− 2, 1+2R

γJ

)

γJ (M−3)!
(15)

wherePnoEve
k,B = 1 − exp

(

− 2R−1
γI

)

is the probability of no

secrecy outage when there is no eavesdropping andF(·, ·) is
given in (16) at the top of the next page withEi(·) as the
exponential integral.3

Proof. See Appendix A

The factorEOBF =
F
(

M−3, 1+2R

γJ

)

+γJF
(

M−2, 1+2R

γJ

)

γJ (M−3)! in (15)
represents the reduction in the no secrecy outage probability
due to eavesdropping.It also represents the probability of
no secrecy outage given that there is no connection outage.
Interestingly, the factorEOBF is independent of the average
transmit data SNRγI . It is only a function of the number of

3The closed-form expression in (16) can be found in [32, Eqn. 3.353.5].
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F(K, a)=

∫ ∞

0

αK

α+ a
exp(−α)dα = (−1)K−1

a
K exp(a)Ei(−a) +

K
∑

n=1

(n− 1)!(−a)K−n
(16)

source nodes in the networkM, the target secrecy rateR, and
the average jamming SNRγJ . The following observations are
in order

1) From (15), the no secrecy outage probability,1−Pk,B,
is monotonically non-increasing withγI . As γI → ∞,
(1−PnoEve

k,B ) = exp
(

− 2R−1
γI

)

= 1. However, the factor
EOBF will not change. This means that, even if Alice
transmits with infinite power, there will remain secrecy
outage which is given by1 − EOBF. More specifically,
the no secrecy outage probability saturates asγI → ∞
at 1− EOBF.

2) From the definition ofF(·, ·) in (16), it is monotonically
decreasing witha = 2R+1

γJ
. Hence, the no secrecy outage

probability is monotonically increasing withγJ . This is
very encouraging since the jamming power only affects
Eve (since the jamming signal is transmitted in the
null space of the orthogonal direction to the jammers-
Bob channel vector). Moreover, the no secrecy outage
probability is monotonically decreasing withR (i.e.
target secrecy rate) sincePr{Rs,k ≥ R} decreases with
increasing ofR.

3) When γJ > 2R + 1, asM → ∞, EOBF → 1. This
implies that increasing the number of source nodes to
infinity can ensure the mitigation of the secrecy outage
probabilities.

Lemma 2. As γJ → ∞, the no secrecy outage probability is
given by

1− Pk,B ≈
exp

(

− 2R−1
γI

)

(M−3)!
F (M− 2, 0) = exp

(

−
2R − 1

γI

)

(17)

Proof. See Appendix C.

Lemma 2 implies that, at highγJ levels, the secrecy outage
probability with and without eavesdropping is almost the
same. Hence, the proposed BF-based jamming scheme is able
to completely secure the transmission in the sense that it
eliminates the impact of Eve. However, there will still be a
connection outage probability which is not affected by the
presence or absence of Eve.

Remark 1. If the CSI of the eavesdropper is unknown at the
legitimate nodes, the solution of the optimization problemin
(12) will be a weighted-sum of the vectors in the subspace
orthogonal to the subspace spanned by the channel vector
between the jamming nodes inJ and the legitimate destination
node. In this case, the beamformer is a precoding matrixG

which represents the solution ofh⊤
BG = 0. The columns of

the precoding matrixG represents the orthogonal directions
to the jammers-Bob links. SincehB is (M − 1) × 1, G is
(M−1)×(M−2). The weights used to combine the columns
of G are complex Gaussian random variables with zero-mean

and variancePJ/(M− 2) each. We discuss this scenario in
the numerical simulations section.

To perform the channel estimation, Bob broadcasts a known
pilot signal so that each node estimates its channel. Then, over
M bit durations, each source node transmits a known pilot
signal to Bob. After that, Bob computes the optimal weights
and feed them back to the jamming nodes. Assuming thatf
bits are used for the quantization of each weight, the total
number of bits required to announce all weights is(M− 1)f .
Since a bit duration is1/W seconds, the time spent to realize
this operation isτ = (M+ 1+ (M− 1)f)/W seconds. The
fraction of the time slot used for this operation is then given
by ̺ = τ

T
= (M + 1 + (M − 1)f)/(WT ). The remaining

time fraction for data transmission is1− ̺. Hence, the target
secrecy rate isR = b

(1−̺)WT
bits/sec/Hz.

B. Random-BF Jamming

To avoid the estimation of the channels between Bob and
the jamming nodes in a given time slot, we propose a new
scheme that only requires the estimation of the power caused
by sending a known signal to Bob. Each node in the jamming
set randomly generates a sequence ofm uniform phases, where
m is an integer. Afterwards, overm bit durations, the potential
jamming nodes transmit known pilot signals (i.e. signals with
known values at all nodes in the network including Eve) to
Bob multiplied by phase shifts using the generated phases.
Since a bit duration is1/W second, the time spent to realize
this operation ism/W seconds. Bob then feeds back theindex
of the best weight used at the cooperative jamming nodes, i.e.,
the weight which yields the lowest interference power at Bob’s
receiver, using⌈log2(m)⌉ bits. Hence, the total consumed time
to realize this scheme isτ = (m + ⌈log2(m)⌉)/W seconds.
The fraction of the time slot used for this operation is then
given by ζ = τ

T
= (m + ⌈log2(m)⌉)/(WT ). The remaining

time fraction for data transmission is1− ζ. Hence, the target
secrecy rate isR = b

(1−ζ)WT
bits/sec/Hz.

The received signal strength indicator (RSSI) at Bob during
the qth trial by the cooperative jammers, denoted bysq, is
given by

sq = |
∑

j∈J

φq,jhj,B|
2

(18)

where q ∈ {1, 2, . . . ,m} and φq,j = exp(−
√
−1ρ), −π ≤

ρ ≤ π, is a uniformly-distributed random variable. The weight
vector which yields the minimum received RSSI value is
selected for jamming Eve. That is, Bob selects the indexq that
satisfiesmin :

q
sq. We can force a threshold on this minimum

RSSI such that, if this threshold is not met, the cooperative
jammers remain silent during the current time slot. Asm
increases, the time consumed for detecting the best weight
vector increases; however, the probability of finding a better
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weight vector increases as well. Note thatφq,j and the AN
are randomly generated at the jamming nodes; hence, they are
unknown at both Bob and Eve. Furthermore, Bob does not
need to know the CSI to the cooperative jammers.

To maintain the average jamming transmit power fixed atPJ

Watts/Hz, we let each jamming node in the set of cooperative
jammers, whose cardinality is(M− 1), transmit with power
PJ/(M− 1). For given channel realizations, when the SINR
at Bob is greater than that at Eve, the instantaneous secrecy
rate of Nodek is given by

Rs,k =

[

log2



1+
γIθk,B

1 + γJ
(M−1)

min :
q

|
∑

j∈J φ∗
q,jhj,B|2





− log2

(

1+
γIθk,E

1+ γJ
(M−1)

|
∑

j∈J φ∗
q̃,jhj,E|2

)]+
(19)

where q̃ = argminq|
∑

j∈J φ∗
q,jhj,B|2. Because the BF

weight, φq,j , represents a rotation andhj,B is an i.i.d. com-
plex Gaussian random variable with zero mean and unit
variance,φ∗

q,jhj,B is also distributed as an i.i.d. complex
Gaussian random variable with zero mean and unit variance4.
Hence, the distribution of

∑

j∈J φ∗
q,jhj,B is a circularly-

symmetric Gaussian random variable with zero mean and
variance(M− 1). The squared-magnitude of

∑

j∈J φ∗
q,jhj,B

is exponentially-distributed random variable and the same
holds for the squared-magnitude of

∑

j∈J φ∗
q,jhj,E.

Following Appendix B, the secrecy outage probability for
fixed |∑j∈J φ∗

q̃,jhj,B|2 and |∑j∈J φ∗
q̃,jhj,E|2 is given by

Pr

{

secrecy
outage

∣

∣

∣

∣

∣

|
∑

j∈J

φ
∗
q̃,jhj,B|

2
, |
∑

j∈J

φ
∗
q̃,jhj,E|

2

}

= 1−

exp(− 2R−1
γI

1+
γJ

(M−1)
|
∑

j∈J φ∗
q̃,j

hj,B|2

)

1 + 2R
1+

γJ
(M−1)

|
∑

j∈J φ∗
q̃,j

hj,B|2

1+
γJ

(M−1)
|
∑

j∈J φ∗
q̃,j

hj,E|2

(20)

The best performance of this scheme is achieved when
the interference at Bob is completely eliminated, i.e.,min :

q

|∑j∈J φ∗
q,jhj,B|2 → 0. This will be the case whenm is

sufficiently large since it is most likely that the randomly-
generated phases at the cooperative jammers will result in a
complete AN removal at Bob. The instantaneous secrecy rate
in this case is given by

Rs,k=

[

log2 (1+γIθk,B)

−log2

(

1+
γIθk,E

1+ γJ
(M−1)

|
∑

j∈J φ∗
q̃,jhj,E|2

)]+ (21)

Since the legitimate nodes do not know Eve’s CSI, and
the design of the weight vector only depends on the le-
gitimate links CSI, the secrecy outage probability becomes
independent ofm asm increases. Asmin :

q
|∑j∈J φ∗

q,jhj,B|2

becomes very small, the secrecy outage probability becomes
independent ofm. This will be verified numerically in Sec-
tion V. An exact expression for the complement secrecy

4Circularly-symmetric Gaussian random variables are invariant to rota-
tions [33].

outage probability of the random-BF jamming scheme when
min :

q
|
∑

j∈J φ∗
q,jhj,B|2 → 0 is provided in the following

lemma.

Lemma 3. As min :
q

|∑j∈J φ∗
q,jhj,B|2 → 0, the probability

of no secrecy outage is given by

1−Pk,B=
exp(− 2R−1

γI
)

γJ

(

F(0,
1 + 2R

γJ
)+γJF(1,

1 + 2R

γJ
)

)

(22)

Proof. See Appendix D.

The reduction in the no secrecy outage probability
under the random-BF scheme is given byERBF =
F(0, 1+2R

γJ
)+γJF(1,

1+2R

γJ
)

γJ
. Similar to the observations made on

the optimal BF-based jamming, the no secrecy outage outage
reduction factor is independent of the average transmit data
SNR γI . It is only a function of the target secrecy rateR
and the average jamming SNRγJ . As γI → ∞, the factor
ERBF will remain unchanged. This implies that, even if Alice
transmits with infinite power, there will remain secrecy outage
which is given by1−ERBF. More specifically, the no secrecy
outage probability saturates asγI → ∞ at 1− ERBF.

Lemma 4. As γJ → ∞, the no secrecy outage probability is
given by

1− Pk,B ≈ exp(−
2R − 1

γI
) (23)

Proof. See Appendix E.

Since the secrecy outage probability is equal to the Alice-
Bob link outage probability (i.e. connection outage probabil-
ity), the random-BF scheme can mitigate the secrecy outage
probability when the direct link is connected, i.e., when there
is no connection outage in the Alice-Bob link.

Remark 2. From the description of the random-BF scheme,
we note that the legitimate nodes do not need Eve’s CSI
or even her channel statistics. In addition, the cooperative
jammers and Alice do not need to know their CSI to Bob. Bob
needs Alice’s CSI to decode her information and to announce
the outage states to Alice if the Alice-Bob link is in outage.

V. PROBLEM FORMULATIONS

In this section, we investigate two important network-layer
metrics for wireless nodes equipped with data buffers. We will
focus our design on the perfect CSI scenario and present the
other two scenarios in the numerical simulations section due
to space limitation. However, the analysis presented here is not
restricted to the BF jamming scheme with perfect CSI and the
other two cases can be handled in the exact same manner.

We assume that there is an average constraint on each node
transmit power. Assuming that a node has an average power
constraint ofP Watts/Hz, the average transmit power of Node
k (averaged across time slots), denoted byPav,k, is given by

Pav,k = ωk Pr{Qk > 0}(1−Pk,B)PI

+

(

∑

ℓ∈J

ωℓ Pr{Qℓ > 0}(1−Pℓ,B)

)

E
{

|g∗k|
2}

PJ ≤P, ∀k

(24)
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The expression in (24) is explained as follows. Nodek
transmits a data packet with average powerPI Watts/Hz
when it is selected for data transmission, its channel to Bob
can securely support a packet transmission, and its queue is
nonempty. If Nodek is not selected for data transmission, it
operates as a jamming node with an average jamming power
of E

{

|g∗k|2
}

PJ Watts/Hz when the node that is selected
for data transmission, say Nodeℓ, has data to send and its
channel is secured. From the queueing analysis in Section III,
Pr{Qk > 0} = λk

µk
= λk

ωk(1−Pk,B) . Hence, the average power
constraint becomes

Pav,k = λkPI +

(

∑

ℓ∈J

λℓ

)

E
{

|g∗k|
2}

PJ ≤ P, ∀k (25)

Interestingly, the power levels of a node are weighted by the
average arrival rate at that node’s queue and the sum average
arrival rates at all the other nodes’ queues.

A. Secure Stable-Throughput Region

The secrecy stable-throughput region is characterized by the
closure of the rate-tuple(λ1, λ2, . . . , λM) which is obtained
by solving the following constrained optimization problem

max :
0≤ωk≤1

PI≥0,PJ≥0

µk

s.t. µℓ > λℓ,∀ℓ 6= k,

M
∑

ℓ=1

ωℓ = 1,

ωk Pr{Qk>0}PI+
∑

ℓ∈J

ωℓ Pr{Qℓ>0}E
{

|g∗k|
2
}

PJ ≤P,∀k

(26)

whereµℓ > λℓ is the condition of queue stability of Transmit-
ter ℓ according to Loynes theorem [22], [30]. If the optimiza-
tion problem in (26) is infeasible, the queues cannot be stable
for the given set of arrival rates. Hence, the system is not
stable. The optimization problem in (26) can be reformulated
as

max :
0≤ωk≤1

PI≥0,PJ≥0

ωk(1− Pk,B)

s.t. ωℓ(1− Pℓ,B) > λℓ,∀ℓ 6= k,

M
∑

ℓ=1

ωℓ = 1,

λkPI +

(

∑

ℓ∈J

λℓ

)

E
{

|g∗k|
2
}

PJ ≤ P, ∀k

(27)

We notice that the third constraint is not a function of{ωℓ}Mℓ=1.
For a fixed power allocation(PI , PJ), the optimization prob-
lem in (27) is a linear program. Substituting with the equality
constraint,

∑M
ℓ=1 ωℓ = 1, we get

min :
0≤ωk≤1

M
∑

ℓ=1
ℓ 6=k

ωℓ,

s.t.
λn

1− Pn,B
≤ ωn,∀n 6= k

(28)

To minimize the objective function in (35), we set{ωℓ}Mℓ=1
ℓ 6=k

to their lowest feasible values. That is,ωℓ = λn

1−Pn,B
, ∀ℓ 6=

k. Then, ωk is obtained from the equality constraintωk +
∑M

ℓ=1
ℓ 6=k

ωℓ = 1. The optimal time-sharing assignments are

ω
⋆
ℓ =

λℓ

(1− Pℓ,B)
,∀ℓ ∈ J , ω

⋆
k = 1−

∑

ℓ∈J

ω
⋆
ℓ (29)

with λkPI +
(
∑

ℓ∈J λℓ

)

E
{

|g∗k|2
}

PJ ≤ P, ∀k. To satisfy all
the constraints in (27), the optimal information signal power

level is upper-bounded asPI ≤min :
k∈T

P−(
∑

ℓ∈J λℓ)E{|g∗
k|

2}PJ

λk
.

Since the secrecy outage probabilityPk,B is monotonically
decreasing with the transmit data and jamming signal power
levels, the inequality becomes an equality (i.e. the transmit
data power level is set to its highest feasible value). That is,

PI =min :
k∈T

P−(
∑

ℓ∈J λℓ)E{|g∗
k|

2}PJ

λk
.

Solution to optimization problem (26): We solve the op-
timization problem in (26) as follows. We generate a
power level PJ . Then, we obtainPI from PI =min :

k∈T
P−(

∑

ℓ∈J λℓ)E{|g∗
k|

2}PJ

λk
. Afterwards, we obtain the optimal

values of{ω⋆
k}Mk=1 using the closed-form expressions in (29).

Then, we substitute with the generated(PI , PJ ) and{ω⋆
k}Mk=1

in the original optimization problem stated in (26) and com-
pute the value of the objective function. Finally, we selectthe
power-level pair(PI , PJ) and the corresponding{ω⋆

k}Mk=1 that
yield the largest value for the objective function in (26).

For every power pair (PI , PJ ), the secrecy stable-
throughput region is given by

S = {(λ1, λ2, . . . , λM) :
M
∑

ℓ=1

λℓ

(1− Pℓ,B)
< 1} (30)

with PI = min
k∈T

P−(
∑

ℓ∈J λℓ)E{|g∗
k|

2}PJ

λk
. The maximum se-

crecy stable-throughput region is a convex set, i.e., a polyhe-
dron. The secure stability region being a convex polyhedron
corresponds to a regime in which when one of the users
increases its rate, the other users’ maximum supportable rates
decrease linearly. In addition, the convexity of the secure
stability region ensures that higher sum rates can be achieved.
Moreover, since the secure stability region is convex, if two
rate pairs are securely stable, then the line segment connecting
those two rate pairs is also composed of stable rate pairs.

B. Secure Delay-Requirement Region

Our second formulation is concerned with the minimization
of one of the average queueing delays subject to conditions
on the queueing delays of the other queues. We refer to this
region as thedelay-requirement region. This region is obtained
via solving the following constrained optimization problem

min :
0≤ωk≤1

PI≥0,PJ≥0

Dk =
1− λk

ωk(1− Pk,B)− λk

,

s.t. µℓ > λℓ,∀ℓ 6= k,

Dn =
1− λn

ωn(1− Pn,B)− λn

≤ Dn,∀n 6= k,

M
∑

ℓ=1

ωℓ ≤ 1

(31)
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This problem can be reformulated as follows

max :
0≤ωk≤1

PI≥0,PJ≥0

ωk(1− Pk,B),

s.t. ωℓ(1− Pℓ,B) > λℓ,∀ℓ 6= k,

1− λn

Dn

+ λn ≤ ωn(1− Pn,B),∀n 6= k,

M
∑

ℓ=1

ωℓ ≤ 1,

λkPI +

(

∑

ℓ∈J

λℓ

)

E
{

|g∗k|
2
}

PJ ≤ P, ∀k

(32)

The queueing-delay requirement ofQn, denoted byDn, repre-
sents an additional constraint onµn. This constraint subsumes
the stability constraint. Thus, the union of both constraints is
µn ≥ λn + 1−λn

Dn
, whereλn + 1−λn

Dn
≥ λn. The optimization

problem is then given by

max :
0≤ωk≤1

PI≥0,PJ≥0

ωk(1− Pk,B),

s.t.
1− λn

Dn

+ λn ≤ ωn(1− Pn,B),∀n 6= k,

M
∑

ℓ=1

ωℓ ≤ 1,

λkPI +

(

∑

ℓ∈J

λℓ

)

E
{

|g∗k|
2
}

PJ ≤ P, ∀k

(33)

This optimization problem can be solved using the approach
explained below (29). For a fixed power pair(PI , PJ), the
optimization problem is a linear program and can be stated as
follows

max :
0≤ωk≤1

ωk,

s.t.
1−λn

Dn
+ λn

1− Pn,B
≤ ωn,∀n 6= k,

M
∑

ℓ=1

ωℓ ≤ 1

(34)

with PI = min
k∈T

P−(
∑

ℓ∈J λℓ)E{|g∗
k|

2}PJ

λk
. Substituting with the

equality constraint,
∑M

ℓ=1 ωℓ = 1, we get

min :
0≤ωk≤1

M
∑

ℓ=1
ℓ 6=k

ωℓ,

s.t.
1−λn

Dn
+ λn

1− Pn,B
≤ ωn,∀n 6= k

(35)

To minimize the objective function in (35), we set{ωℓ}Mℓ=1
ℓ 6=k

to their lowest feasible values. That is,ωℓ =
1−λn
Dn

+λn

1−Pn,B
,

∀ℓ 6= k. Then,ωk is obtained from the equality constraint
ωk +

∑M
ℓ=1
ℓ 6=k

ωℓ = 1. Hence, the optimal allocation vector

(ω⋆
1 , ω

⋆
2 , . . . , ω

⋆
M) is then given by

ω
⋆
n =

1−λn

Dn
+ λn

1− Pn,B
, ω

⋆
k = 1−

M
∑

n=1
n6=k

ω
⋆
n (36)

For a given(PI , PJ), the set of queueing delay require-
ments, denoted by(D1,D2, . . . ,DM), is governed by the
following relation

D = {(D1,D2, . . . ,DM) :
M
∑

n=1

1−λn

Dn
+ λn

1− Pn,B
≤ 1} (37)

This tuple is defined as the set of delay requirements that
can be supported by the network at hand such that all user
requirements are satisfied. It can be easily shown that the
delay-requirement region has a positive semi-definite diagonal
Hessian matrix. Hence, the region is a convex region. Since the
secure delay-requirement region is convex, if two requirement
pairs are achievable, then the line segment connecting those
two delay-requirement pairs is also achievable.

When all channels are modeled as i.i.d. random variables,
Pn,B = PB for all n. The delay-requirement region can be
rewritten as

M
∑

n=1

1− λn

Dn

≤ (1− PB)−
M
∑

n=1

λn (38)

In what follows, we investigate the case of symmetric-load
users, whereλk = λ for all k. In this case, the optimal time-
sharing parameter isωk = 1/M for all k. Hence, the queueing
delay of queuek is given by

Dk = D =
1− λ

1−PB
M

− λ
, ∀k (39)

The average queueing delay of the network isDav = D.
As the number of legitimate source nodes increases, i.e.,M
increases, the instantaneous secrecy rate and the complement
probability of secrecy outage,1 − PB, increase. However,
the time allocated to each user decreases as well, which is
controlled by1/M. Hence,(1 − PB)/M represents a trade-
off betweenincreasing the number of users to enhance the
security of the transmissionand the probability of servicing
a user in a given time slot. Accordingly, there is an optimal
value forM such that(1− PB)/M is maximized.

VI. N UMERICAL SIMULATIONS

In this section, we present some numerical simulations
showing the performance gains of our proposed schemes.
We investigate the secure stable-throughput region of several
schemes from the literature such as the best single-jammer
scheme, where the node that maximizes the instantaneous
secrecy rate is chosen for jamming the eavesdropper, and
the fixed-jamming scheme, where a single node is assigned
for jamming. We also compare their performance to our
proposed scheme performance. We emphasize here that the
closed-form expressions presented in this paper have been
verified numerically. However, we did not show the curves
since adding them will make the figure too crowded and also
the legend will block the curves. Unless otherwise stated,
we use the following system’s parameters:b = 1000 bits,
WT = 1000, R◦ = b/(WT ) = 1 bits/sec/Hz,P/κ = 20
dB, γI = 14 dB, γJ = 7 dB, f = 4, andM = 5 source
nodes. To simplify the numerical evaluation of the secrecy
stable-throughput region, which is anM-dimensional region,
we assume thatλk = λ for nodes2, 3, . . . ,M. Figure 2
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Fig. 2. The secrecy stable-throughput regions of the TDMA-jamming based
schemes.

shows the secrecy stable-throughput regions for our proposed
jamming schemes in addition to the: (1) no-eavesdropper case
which represents an upper bound on performance, (2) fixed-
jamming scheme, where we have a known cooperative jammer
that confounds the eavesdropper in each time slot, (3) best-
jammer scheme [9], where the single cooperative jammer
which maximizes the instantaneous secrecy rate is selected
in each time slot, (4) the no-jamming case, where there is no
jamming.

To implement the fixed (deterministic) jamming scheme,
and given that we cannot fix the jamming nodes since a
jamming node in a given time slot can be scheduled for data
transmission in the following time slot, we assume that there
are two fixed cooperative jammers such that when one of
them is selected for data transmission, the other one acts as
a cooperative jammer. The case of no eavesdropper’s CSI at
the transmitter can achieve much higher throughput than the
case of complete CSI knowledge when choosing the single
cooperative jammer that maximizes the instantaneous secrecy
rate of the transmitting node in a given time slot. This case
provides a stable-throughput region close to that achievedwith
complete CSI knowledge in the case of BF jamming but at the
expense of not knowing the eavesdropper’s channel gains. The
random BF withm = 25 achieves relatively close performance
to the BF scheme with no Eve’s CSI at the legitimate nodes.
The random-BF scheme withm = 2, which uses a small
number of phase sequences at the cooperative jammers, is still
better than the fixed-jamming and the no-jammer scenarios.
It also achieves a performance very close to the best-jammer
scheme, which requires Eve’s CSI and a global CSI at a central
control unit to decide the best jammer in every time slot,
without the need for knowledge of Eve’s CSI or a global CSI
of the legitimate links at the legitimate nodes. Forλ > 0.1
packets/slot, the random-BF jamming scheme, optimal-BF
jamming scheme with no Eve’s CSI, and optimal-BF jamming
scheme with full CSI achieve a maximum secrecy stable
throughput of0.2, 0.21, and0.4 packets/slot, respectively, for
User 1 while all the other schemes achieve zero throughput for
User 1. This demonstrates the gains of our proposed BF-based
jamming schemes relative to the existing schemes.

Fig. 3 shows the network maximum secrecy stable-
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Fig. 3. Secure stable-throughput region for the random BF versus different
values ofm. We also plotted the optimal-BF jamming scheme when Eve’s
CSI is unknown at the legitimate nodes for comparison purpose.

throughput region when applying the random-BF jamming
scheme. It demonstrates the impact of increasing the number
of possible phases at the cooperative jammers to eliminate
the AN at Bob. The case of optimal BF, which requires full
CSI knowledge of the legitimate channels at a control unit to
compute the optimal BF weights, is also plotted to show that
our proposed random BF scheme can achieve performance
close to that of the optimal BF without the need for CSI
knowledge of all legitimate links at the jamming nodes. This
figure is generated usingM = 4. The optimal BF is always
superior to the random BF since it is designed using the
optimal weights to null the AN at Bob based on the CSI of
the legitimate links.

In Fig. 4, we show the delay-requirement region of the
optimal-BF jamming scheme with full CSI and the random-
BF scheme. The assumed system’s parameters areλ1 = 0.1
packets/slot,λ2 = 0.2 packets/slot,λk = 0 for all k ≥ 3, and
M = 5. In the figure, the arrowheads point to the direction of
the achievable delay requirements. As shown in the figure, the
region is convex which implies that all points belonging to any
line connecting two achievable delay pairs are also achievable.
As the queueing-delay requirement of User2 increases, the
achievable average queueing delay of User 1 decreases. For
example, in the case of the optimal-BF jamming scheme,
if User 1 requires a queueing delay of20 time slots, the
minimum queueing delay of User 2 is2.5 time slots. However,
if User 1 requires an average queueing delay of10 time slots,
the minimum queueing delay of User 2 is3.5 time slots.
Hence, the minimum queueing delay of User2 is increased
since User1 requests a lower queueing delay. As expected,
the optimal-BF jamming scheme outperforms the random-BF
scheme since the former is obtained using the appropriate BF
weights designed based on full CSI of all links at the legitimate
transmitting nodes (i.e. Eve’s and the legitimate links’ CSI).

Fig. 5 shows the secrecy outage probabilities of the pro-
posed jamming schemes versus the average information-
bearing signal SNR,γI , for different values of the number
of source nodes,M. The secrecy outage probabilities are
monotonically nonincreasing withM and γI . The optimal-
BF jamming scheme with full CSI achieves the lowest secrecy
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Fig. 5. Secrecy outage probabilities of the proposed BF-based jamming
schemes versusγI for different values ofM.

outage probability. Moreover, the optimal-BF jamming scheme
with no Eve’s CSI achieves the second best performance. This
is because both BF-based jamming schemes require more CSI
than the random-BF scheme, which does not require Eve’s
CSI or the legitimate nodes CSI at the transmitting nodes. The
secrecy outage probabilities saturate at highγI . The saturation
levels of the secrecy outage probabilities for the optimal BF-
based jamming and random-BF jamming schemes are1−ERBF

and1− EOBF, respectively, as explained earlier.

VII. C ONCLUSIONS

In this paper, we proposed a joint PHY-MAC-network
layers design for buffered-aided source nodes communicating
with their common destination. The source nodes share the
channel using a TDMA scheme with probabilistic time slot
assignment. The assignment probabilities were designed to
satisfy given QoS requirements for the legitimate source nodes
(e.g. throughput, queue stability, average queueing delay) and
their optimal values are functions of the system’s parameters,
the secrecy outage probabilities, and mean arrival rates atthe
queues. To reduce the secrecy outage probabilities and improve
the users’ QoS, we proposed a BF-based jamming scheme
that enhances the instantaneous secrecy rate of the legitimate
nodes. We showed that using cooperative BF-based jamming

with global CSI at the legitimate nodes can achieve a perfor-
mance, in terms of the maximum secure stable-throughput,
that is close to the case when there is no eavesdropping.
Moreover, we proposed a random-BF jamming scheme where
the weights/phases that eliminate the AN at Bob are generated
randomly at the cooperative jammers without the need for the
jammers-Eve or the jammers-Bob links’ CSI. This scheme
outperformed the maximum-jamming-link scheme, where the
cooperative jammer that maximizes the instantaneous secrecy
rate of the transmitting node is selected in each time slot which
requires global CSI at the legitimate nodes, and achieved a
performance level close to that of the optimal BF without Eve’s
CSI. We derived the instantaneous secrecy rates and secrecy
outage probabilities of the links as well as the maximum
stable-throughput region and the delay-requirement region of
the network for the proposed jamming schemes.

APPENDIX A
PROOF OFLEMMA 1

Using the total probability theorem, thecomplementprob-
ability of secrecy outage for Transmitterk is given by

1− Pk,B=Pr

{

θk,B≥
θk,E

1+γJ |
∑

j∈J g∗jhj,E|2

}

× Pr

{

R ≤ Rk,B|θk,B≥
θk,E

1+γJ |
∑

j∈J g∗jhj,E|2

}

+Pr

{

θk,B<
θk,E

1+γJ |
∑

j∈J g∗j hj,E|2

}

× Pr

{

R ≤ Rk,B|θk,B<
γIθk,E

1+γJ |
∑

j∈J g∗j hj,E|2

}

(40)

Note that the probabilityPr{θk,B ≥ γIθk,E

1+γJ |
∑

j∈J g∗
j hj,E|2

} is
equal to the probability that the instantaneous secrecy rate
is greater than or equal to zero. Thus, we compute this
probability by settingR to zero in the expression ofPk,B. The
probabilityPr{R ≤ Rk,B|θk,B ≥ γIθk,E

1+γJ |
∑

j∈J g∗
j hj,E|2

} can be
rewritten as

Pr

{

R ≤ Rk,B|θk,B≥
θk,E

1+γJ |
∑

j∈J g∗j hj,E|2

}

=
Pr
{

R ≤ Rk,B, θk,B≥
θk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

}

Pr
{

θk,B≥
θk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

}

(41)

The probability that{R ≤ Rk,B} subsumes the probability
that {θk,B ≥ θk,E

1+γJ |
∑

j∈J g∗
j hj,E|2 }. Thus, the joint probability

is just the probability of the event{R ≤ Rk,B}. Accordingly,
we have

Pr

{

R ≤ Rk,B|θk,B≥
θk,E

1+γJ |
∑

j∈J g∗jhj,E|2

}

=
Pr {R ≤ Rk,B}

Pr
{

θk,B≥
θk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

}

(42)

Next, we move our attention to the second term of (40).
Since it is given that the SINR at the eavesdropper’s receiver
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is greater than the SINR at Bob, the instantaneous secrecy rate
is Rk,B = 0. Thus,

Pr

{

R ≤ Rs,k = 0
∣

∣

∣
θk,B<

θk,E

1+γJ |
∑

j∈J g∗jhj,E|2

}

= 0 (43)

Here, we used the fact that the rate,R, is a nonnegative value,
i.e., R ≥ 0.

The probability in (40) can be rewritten as

1−Pk,B=Pr







2R≤
1+γIθk,B

1+
γIθk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2







= Pr











θk,B ≥
2R
(

1+
γIθk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

)

− 1

γI











(44)

Since θk,B is an exponentially-distributed random variable
with unit mean, for fixedθk,E and |

∑

j∈J g∗jhj,E|2, we get

Pr











θk,B ≥
2R
(

1+
γIθk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

)

− 1

γI

∣

∣

∣

∣

∣

θk,E, |
∑

j∈J

g
∗
jhj,E|

2











= exp






−
2R
(

1+
γIθk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

)

− 1

γI







(45)

Averaging overθk,E, we get

I=

∫ ∞

0

exp






−
2R
(

1+
γIθk,E

1+γJ |
∑

j∈J g∗
j
hj,E|2

)

− 1

γI






exp(−θk,E)dθk,E

= exp

(

−
2R − 1

γI

)
∫ ∞

0

exp (−ηθk,E) exp(−θk,E)dθk,E

=
exp

(

− 2R−1
γI

)

1 + η
(46)

whereη = 2R

1+γJ |
∑

j∈J g∗
j hj,E|2 .

It can be shown, following [34], that the random variable
α= |g∗hE|2 is Chi-square with2(M−2) degrees of freedom.
Its probability density function (PDF) is characterized by

Fα(Θ)=
1

(M−3)!
ΘM−3 exp(−Θ),Θ ≥ 0 (47)

Averaging overα = |g∗hE|2 = |∑j∈J g∗jhj,E|2, the proba-
bility of no secrecy outage is

1− Pk,B =

∫ ∞

0

exp
(

− 2R−1
γI

)

1 + 2R

1+γJα

1

(M−3)!
α
M−3 exp(−α)dα

=
exp

(

− 2R−1
γI

)

(M−3)!

∫ ∞

0

αM−3

1 + 2R

1+γJα

exp(−α)dα

(48)

This probability is rewritten as

1−Pk,B=

∫ ∞

0

exp
(

− 2R−1
γI

)

1 + 2R

1+γJα

1

(M−3)!
α
M−3 exp(−α)dα

=
exp

(

− 2R−1
γI

)

(M−3)!

∫ ∞

0

αM−3(1 + γJα)

1 + γJα+ 2R
exp(−α)dα

=
exp

(

− 2R−1
γI

)

(M−3)!

1

γJ

∫ ∞

0

αM−3(1 + γJα)

α+ 1+2R

γJ

exp(−α)dα

=
exp

(

− 2R−1
γI

)

(M−3)!

1

γJ

×

(

∫ ∞

0

αM−3

α+ 1+2R

γJ

exp(−α)dα+γJ

∫ ∞

0

αM−2

α+ 1+2R

γJ

exp(−α)dα

)

=
exp

(

− 2R−1
γI

)

(M−3)!

(

F
(

M−3, 1+2R

γJ

)

+γJF
(

M−2, 1+2R

γJ

))

γJ
(49)

whereF(·, ·) is given in (16) withEi(·) as the exponential
integral function.F(·, ·) is given in [32, Eqn. 3.353.5].

The termexp
(

− 2R−1
γI

)

in (16) represents the no secrecy
outage probability when there is no eavesdropping in the
network. Hence, we can rewrite as follows

1−Pk,B = (1− P
noEve
k,B )

F
(

M− 3, 1+2R

γJ

)

+γJF
(

M− 2, 1+2R

γJ

)

γJ (M−3)!
(50)

wherePnoEve
k,B = 1− exp

(

− 2R−1
γI

)

.

APPENDIX B

In this appendix, we compute the following probability

Pr

{

1+
γIθk,B

1+X2

1+
γIθk,E

1+X1

> 2R
}

(51)

whereθk,B, θk,E, X1 andX2 are random variables. Letting
x = θk,B andy = θk,E, (51) is rewritten as

P =Pr

{

x >
2R − 1

γI
1+X2

+ 2R
1 +X2

1+X1
y

}

(52)

For fixedy, E1 = 2R 1+X2

1+X1
andE2 = 2R−1

γI
1+X2

, we have

Pr

{

1+
γIθk,B

1+X2

1+
γIθk,E

1+X1

> 2R|y,E1, E2

}

= Pr {x > E1y + E2|y,E1, E2}

= exp(−(E1y + E2))
(53)

Sincey is exponentially-distributed random variable with unit
mean, averaging over it results in

G = Pr

{

1+
γIθk,B

1+X2

1+
γIθk,E

1+X1

> 2R
∣

∣

∣
E1, E2

}

= exp(−E2)

∫ ∞

y=0

exp(−(E1 + 1)y)dy

=
exp(−E2)

E1 + 1
=

exp(− 2R−1
γI

1+X2

)

1 + 2R 1+X2
1+X1

(54)
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SinceE1 and E2 are functions ofX1 and X2, the closed-

form expression ofPr

{

1+
γIθk,B
1+X2

1+
γIθk,E
1+X1

> 2R
}

can be obtained by

averaging overX1 andX2.

APPENDIX C
PROOF LEMMA 2

From (15) in Lemma 1, asγJ → ∞, we have

limit
γJ→∞

(1−Pk,B)=(1−P
noEve
k,B )

F (M− 2, 0)

(M−3)!
(55)

From (16),F (M− 2, 0) = Γ(M − 2) = (M − 3)!, where
Γ(·) is the Gamma function. Hence,

limit
γJ→∞

(1−Pk,B)≈ (1−P
noEve
k,B ) = exp

(

−
2R − 1

γI

)

(56)

This completes the proof.

APPENDIX D
PROOF OFLEMMA 3

Starting with the instantaneous secrecy rate expres-
sion in (21), the secrecy outage probability for a fixed
|∑j∈J φ∗

q̃,jhj,E|2 is given by

Pr

{

secrecy
outage

∣

∣

∣

∣

∣

|
∑

j∈J

φ
∗
q̃,jhj,E|

2

}

= 1−
exp(− 2R−1

γI
)

1 + 2R 1

1+
γJ

M−1
|
∑

j∈J φ∗
q̃,j

hj,E|2

(57)

Averaging overX2 =
|
∑

j∈J φ∗
q̃,jhj,E|

2

M−1 , we get the secrecy
outage probability as follows

Pk,B = 1− exp(−
2R − 1

γI
)

∫ ∞

X2=0

exp(−X2)

1 + 2R 1
1+γJX2

dX2 (58)

The probability of no secrecy outage is given by

1−Pk,B=exp(−
2R − 1

γI
)

∫ ∞

X2=0

(1+γJX2) exp(−X2)

1+γJX2 + 2R
dX2

=
exp(− 2R−1

γI
)

γJ

∫ ∞

0

(1+γJX2) exp(−X2)

X2 +
1+2R

γJ

dX2

=
exp(− 2R−1

γI
)

γJ

×

(

∫ ∞

0

exp(−X2)

X2 +
1+2R

γJ

dX2+

∫ ∞

0

(γJX2) exp(−X2)

X2 +
1+2R

γJ

dX2

)

=
exp(− 2R−1

γI
)

γJ

(

F(0,
1 + 2R

γJ
)+γJF(1,

1 + 2R

γJ
)

)

(59)

whereF(·, ·) is given in (16). This completes the proof.

APPENDIX E
PROOF LEMMA 4

As γJ → ∞, from (22) in Lemma 3, the no secrecy outage
probability is given by

limit
γJ→∞

(1− Pk,B) ≈ exp(−
2R − 1

γI
)F(1, 0) (60)

From (16),F(1, 0) =
∫∞

0
exp(−α)dα = 1. Hence,

limit
γJ→∞

(1− Pk,B) ≈ exp(−
2R − 1

γI
) (61)

This completes the proof.
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