254 research outputs found

    The Likelihood Encoder for Lossy Compression

    Full text link
    A likelihood encoder is studied in the context of lossy source compression. The analysis of the likelihood encoder is based on the soft-covering lemma. It is demonstrated that the use of a likelihood encoder together with the soft-covering lemma yields simple achievability proofs for classical source coding problems. The cases of the point-to-point rate-distortion function, the rate-distortion function with side information at the decoder (i.e. the Wyner-Ziv problem), and the multi-terminal source coding inner bound (i.e. the Berger-Tung problem) are examined in this paper. Furthermore, a non-asymptotic analysis is used for the point-to-point case to examine the upper bound on the excess distortion provided by this method. The likelihood encoder is also related to a recent alternative technique using properties of random binning

    Finite-Blocklength Bounds for Wiretap Channels

    Full text link
    This paper investigates the maximal secrecy rate over a wiretap channel subject to reliability and secrecy constraints at a given blocklength. New achievability and converse bounds are derived, which are shown to be tighter than existing bounds. The bounds also lead to the tightest second-order coding rate for discrete memoryless and Gaussian wiretap channels.Comment: extended version of a paper submitted to ISIT 201
    corecore