5 research outputs found

    MEG Source Localization via Deep Learning

    Full text link
    We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned for single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization

    Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including i) projection of MEG data into source space, ii) removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease

    Accurate reconstruction of temporal correlation for neuronal sources using the enhanced dual-core MEG beamformer.

    No full text
    Beamformer spatial filters are commonly used to explore the active neuronal sources underlying magnetoencephalography (MEG) recordings at low signal-to-noise ratio (SNR). Conventional beamformer techniques are successful in localizing uncorrelated neuronal sources under poor SNR conditions. However, the spatial and temporal features from conventional beamformer reconstructions suffer when sources are correlated, which is a common and important property of real neuronal networks. Dual-beamformer techniques, originally developed by Brookes et al. to deal with this limitation, successfully localize highly-correlated sources and determine their orientations and weightings, but their performance degrades at low correlations. They also lack the capability to produce individual time courses and therefore cannot quantify source correlation. In this paper, we present an enhanced formulation of our earlier dual-core beamformer (DCBF) approach that reconstructs individual source time courses and their correlations. Through computer simulations, we show that the enhanced DCBF (eDCBF) consistently and accurately models dual-source activity regardless of the correlation strength. Simulations also show that a multi-core extension of eDCBF effectively handles the presence of additional correlated sources. In a human auditory task, we further demonstrate that eDCBF accurately reconstructs left and right auditory temporal responses and their correlations. Spatial resolution and source localization strategies corresponding to different measures within the eDCBF framework are also discussed. In summary, eDCBF accurately reconstructs source spatio-temporal behavior, providing a means for characterizing complex neuronal networks and their communication
    corecore