569 research outputs found

    A study of BER Performance of OFDM Modulation in Multi-fading Channel

    Get PDF
    The diversity and complexity of Multipath fading can influence performance of the Orthogonal Frequency Division Multiplexing (OFDM) modulation. The system performance analysis is based on correct design of a channel model. According to system characters of OFDM, a frequency selective slow fading channel model is built up, by combining the Trapped delay line model and the slow fading characters, such as the Rayleigh, Rician or Nakagami distribution. The theoretical Bit Error Rate (BER) of OFDM system under this channel model is deduced based on the BER or Symbol Error Rate of MQAM under Additive White Gauss Noise (AWGN) channel and the Probability Density (PDF) Function of different slow fading channel. The applicability of this channel model and the System BER performance under different slow fading channel is verified by simulation. The results indicate that the simulation result is consistent with the theoretical analysis under MQAM modulation method, which illustrates that the frequency selective slow fading channel model is suitable for the performance analyzing of OFDM system

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Bit error rate evaluation for orthogonal space-time block codes in the presence of channel estimation errors

    Get PDF

    A Study on Efficient Receiver Design for UWA Communication System

    Get PDF
    Underwater Acoustic Channels are fast varying channel according to environmental conditions and exhibit strong random fluctuations in amplitude as well as phase due to reflection, refraction, and diffraction. Due to these highly space, time and frequency dependent channel characteristics, it is very difficult to establish reliable and long-range underwater acoustic communication. In this project, channel modeling has been done showing the different channel characteristics of underwater and their dependencies on frequency, temperature, pressure, salinity etc. Also, it has been shown through some theoretical and practical results that the nakagami fading is the best suitable generalized fading to be used in underwater. In this research work various techniques such as equalization, pilot based OFDM and LDPC Coding has also been done to mitigate the channel fading effect and to improve the performance. An adaptive equalizer has been implemented through three different algorithms LMS, NLMS and RLS for linear as well as non-linear channels to mitigate ISI and, their convergence characteristics along with bit error rate performance has been compared. Two types of pilot insertion, block and Comb type has also been done while implementing OFDM. Block type pilot based OFDM is suitable for slow fading and comb type pilot based OFDM is suitable for a fast fading channel. As in underwater, both types of fading exist, hence, lattice type pilot based OFDM is the best suitable for underwater acoustic communication. LDPC channel coding through which almost Shannon capacity performance can be achieved; has also been implemented taking nakagami channel fading. Bit error rate performance has been compared for different LDPC decoding techniques and for different code rate

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    A Review on Evaluation of BER in CDMA using SGA Technique

    Get PDF
    In today’s era wireless communication systems are one of the most essential part of this digitized world and evolution of CDMA system has made it more convenient and secure to communicate the information within the system. From past one decade CDMA system has met the rapidly developing need of a communication system by improving in terms of several problems like multipath fading, interference, cross-talk etc. This paper summarizes all the clusters of specific analysis techniques with different constraints and conditions to evaluate the performance of CDMA system. The major emphasis of this paper lies on the reasons behind the problems and their remedy technologies to find out the most efficient technique for a noise and distortion free communication system suitable for today’s environment

    Exact BER Performance of Asynchronous MC-DS-CDMA over Fading Channels

    No full text
    In this contribution an accurate average Bit Error Rate (BER) formula is derived for MC-DS-CDMA in the context of asynchronous transmissions and random spreading sequences. We consider a flat Nakagami-m fading channel for each subcarrier. Our analysis is based on the Characteristic Function (CF) and does not rely on any assumption concerning the statistical behavior of the interference. We develop a new closed-form expression for the conditional CF of the inter-carrier interference and provide a procedure for calculating the exact BER expressed in the form of a single numerical integration. The accuracy of the Standard Gaussian Approximation (SGA) technique is also evaluated. Link-level results confirm the accuracy of the SGA for most practical conditions
    corecore