3,813 research outputs found

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target Identification in Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood (ML) estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar (SAR) data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations (exponentials frequencies) are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as (1) stationary noise, (2) autoregressive (AR) noise and (3) autoregressive moving-average (ARMA) noise and in two dimensions as (1) stationary noise, and (2) white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood (IQML) methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation (MODE) techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise for Target in Identification Synthetic Aperture Radar Images

    Get PDF
    This dissertation develops techniques for estimating exponential signals in unknown colored noise. The Maximum Likelihood ML estimators of the exponential parameters are developed. Techniques are developed for one and two dimensional exponentials, for both the deterministic and stochastic ML model. The techniques are applied to Synthetic Aperture Radar SAR data whose point scatterers are modeled as damped exponentials. These estimated scatterer locations exponentials frequencies are potential features for model-based target recognition. The estimators developed in this dissertation may be applied with any parametrically modeled noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques are developed for a single instance of data in colored noise which is modeled in one dimension as 1 stationary noise, 2 autoregressive AR noise and 3 autoregressive moving-average ARMA noise and in two dimensions as 1 stationary noise, and 2 white noise driving an exponential filter. The classical ML approach is used to solve for parameters which can be decoupled from the estimation problem. The remaining nonlinear optimization to find the exponential frequencies is then solved by extending white noise ML techniques to colored noise. In the case of deterministic ML, the computationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood IQML methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional Method of Direction Estimation MODE techniques are extended to colored noise. Simulations show that the techniques perform close to the Cramer-Rao bound when the model matches the observed noise

    Techniques for the enhancement of linear predictive speech coding in adverse conditions

    Get PDF

    Wide-Area Measurement-Based Applications for Power System Monitoring and Dynamic Modeling

    Get PDF
    Due to the increasingly complex behavior exhibited by large-scale power systems with more uncertain renewables introduced to the grid, wide-area measurement system (WAMS) has been utilized to complement the traditional supervisory control and data acquisition (SCADA) system to improve operators’ situational awareness. By providing wide-area GPS-time-synchronized measurements of grid status at high time-resolution, it is able to reveal power system dynamics which cannot be captured before and has become an essential tool to deal with current and future power grid challenges. According to the time requirements of different power system applications, the applications can be roughly divided into online applications (e.g., data visualization, fast disturbance and oscillation detection, and system response prediction and reduction) and offline applications (e.g., measurement-driven dynamic modeling and validation, post-event analysis, and statistical analysis of historical data). In this dissertation, various wide-area measurement-based applications are presented. Firstly a pioneering WAMS deployed at the distribution level, the frequency monitoring network (FNET/GridEye) is introduced. For conventional large-scale power grid dynamic simulation, two major challenges are 1) accuracy of detailed dynamic models, and 2) computation burden for online dynamic assessment. To overcome the restrictions of the traditional approach, a measurement-based system response prediction tool using a Multivariate AutoRegressive (MAR) model is developed. It is followed by a measurement-based power system dynamic reduction tool using an autoregressive model vi to represent the external system. In addition, phasor measurement unit (PMU) data are employed to perform the generator dynamic model validation study. It utilizes both simulation data and measurement data to explore the potentials and limitations of the proposed approach. As an innovative application of using wide-area power system measurement, digital recordings could be authenticated by comparing the extracted frequency and phase angle from recordings with power system measurement database. It includes four research studies, i.e., oscillator error removal, ENF phenomenology, tampering detection, and frequency localization. Finally, several preliminary data analytics studies including inertia estimation and analysis, fault-induced delayed voltage recovery (FIDVR) detection, and statistical analysis of oscillation database, are presented

    A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel

    Get PDF
    An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm

    Techniques of EMG signal analysis: detection, processing, classification and applications

    Get PDF
    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications

    Speech recognition in noise using weighted matching algorithms

    Get PDF

    Serial Correlations in Single-Subject fMRI with Sub-Second TR

    Full text link
    When performing statistical analysis of single-subject fMRI data, serial correlations need to be taken into account to allow for valid inference. Otherwise, the variability in the parameter estimates might be under-estimated resulting in increased false-positive rates. Serial correlations in fMRI data are commonly characterized in terms of a first-order autoregressive (AR) process and then removed via pre-whitening. The required noise model for the pre-whitening depends on a number of parameters, particularly the repetition time (TR). Here we investigate how the sub-second temporal resolution provided by simultaneous multislice (SMS) imaging changes the noise structure in fMRI time series. We fit a higher-order AR model and then estimate the optimal AR model order for a sequence with a TR of less than 600 ms providing whole brain coverage. We show that physiological noise modelling successfully reduces the required AR model order, but remaining serial correlations necessitate an advanced noise model. We conclude that commonly used noise models, such as the AR(1) model, are inadequate for modelling serial correlations in fMRI using sub-second TRs. Rather, physiological noise modelling in combination with advanced pre-whitening schemes enable valid inference in single-subject analysis using fast fMRI sequences

    Spectral analysis of phonocardiographic signals using advanced parametric methods

    Get PDF
    • …
    corecore