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ABSTRACT 

Due to the increasingly complex behavior exhibited by large-scale power systems with 

more uncertain renewables introduced to the grid, wide-area measurement system 

(WAMS) has been utilized to complement the traditional supervisory control and data 

acquisition (SCADA) system to improve operators’ situational awareness. By providing 

wide-area GPS-time-synchronized measurements of grid status at high time-resolution, it 

is able to reveal power system dynamics which cannot be captured before and has 

become an essential tool to deal with current and future power grid challenges. According 

to the time requirements of different power system applications, the applications can be 

roughly divided into online applications (e.g., data visualization, fast disturbance and 

oscillation detection, and system response prediction and reduction) and offline 

applications (e.g., measurement-driven dynamic modeling and validation, post-event 

analysis, and statistical analysis of historical data).  

In this dissertation, various wide-area measurement-based applications are presented. 

Firstly a pioneering WAMS deployed at the distribution level, the frequency monitoring 

network (FNET/GridEye) is introduced.  For conventional large-scale power grid 

dynamic simulation, two major challenges are 1) accuracy of detailed dynamic models, 

and 2) computation burden for online dynamic assessment. To overcome the restrictions 

of the traditional approach, a measurement-based system response prediction tool using a 

Multivariate AutoRegressive (MAR) model is developed. It is followed by a 

measurement-based power system dynamic reduction tool using an autoregressive model 
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to represent the external system. In addition, phasor measurement unit (PMU) data are 

employed to perform the generator dynamic model validation study. It utilizes both 

simulation data and measurement data to explore the potentials and limitations of the 

proposed approach. As an innovative application of using wide-area power system 

measurement, digital recordings could be authenticated by comparing the extracted 

frequency and phase angle from recordings with power system measurement database. It 

includes four research studies, i.e., oscillator error removal, ENF phenomenology, 

tampering detection, and frequency localization. Finally, several preliminary data 

analytics studies including inertia estimation and analysis, fault-induced delayed voltage 

recovery (FIDVR) detection, and statistical analysis of oscillation database, are 

presented. 
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 Introduction to Frequency Monitoring Chapter 1

Network (FNET/GridEye) 

1.1 Frequency Monitoring Network 

As a pioneering WAMS deployed at the distribution level, the frequency monitoring 

network FNET/GridEye has been continuously monitoring the grids for over ten years 

and various data visualization and analytics applications have been developed [1-5]. 

Unlike phasor measurement units (PMU) which require high manufacturing and 

installation costs [6-8], FNET/GridEye measures from normal single-phase electrical 

outlets with a simple procedure at a lower outlay. As a complete wide-area monitoring 

system, all the phasor measurements collected by frequency disturbance recorders 

(FDRs) are transmitted to the FNET/GridEye server hosted at the University of 

Tennessee, Knoxville (UTK), and Oak Ridge National Laboratory (ORNL) for cutting-

edge research and development (R&D).  

After over ten years of development and a number of improvements, the FNET/GridEye 

system is widely welcomed by the academia, industry as well as governments and has 

proved to be very stable and reliable. As of 2016, more than 200 FDR units have been 

deployed across the four North American Interconnections: Eastern Interconnections 

(EI), Western Electricity Coordinating Council system (WECC), Electric Reliability 

Council of Texas system (ERCOT), and Hydro Quebec area. Over 50 FDRs have been 

deployed worldwide, e.g., Europe, China, Egypt, etc. Figure  1-1 shows the current 

distribution of FDRs across the North American power grid and Figure  1-2 shows the  
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Figure  1-1 FDR deployment in North America 

 

Figure  1-2 FDR worldwide deployment 
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world-wide FDR deployment map. Both global and local characteristics of frequency and 

phase angle variation can be monitored and analyzed based on these large volumes of 

data. 

1.2 FNET/GridEye System Architecture 

FNET/GridEye system consists of two major parts: sensors that are deployed across the 

power grids and data servers hosted by UTK and ORNL as shown in Figure  1-3. The 

sensor (FDR) is an embedded microprocessor system with GPS time synchronization and 

Ethernet communications capability [2-3]. So far, three generations of FDRs have been 

developed to consistently pursue for higher measurement accuracy and better data 

quality. The current most-deployed FDR is Generation-II as shown in Figure  1-4. Some 

of the new features of Generation-III include: 1) added power quality analysis function 

which can estimate harmonics composition and detect voltage sag and swell [9]; 2) 

higher steady-state phase angle and frequency measurement accuracy [10]. The error is 

less than 0.005 ̊ and 0.00006 Hz, respectively, compared with 0.01 ̊ and 0.0005 Hz for 

Generation-II; 3) improved dynamic-state measurement accuracy [11]; 4) use of atomic 

clock as the GPS timing backup. FDRs' holdover capability can be up to a day without 

losing accuracy. 

The other part of FNET/GridEye system is the data center, where the measurements 

provided by FDRs are systematically managed, technically processed, and safely 

archived. The data center is a multi-layer data management system which is composed of 

the data server, application server, web server, and backup server, etc. Since power  
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Figure  1-3 FNET/GridEye system architecture 

 

Figure  1-4 Second-generation FDR 
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system applications require various time requirements, the applications can be roughly 

divided into online applications (e.g., data visualization, fast disturbance detection and 

localization, oscillation and islanding detection) [12-17] and offline applications (e.g., 

measurement-driven dynamic modeling and validation, post-event analysis, various data 

analysis and forensic research) [18-23]. FNET/GridEye system and synchrophasor 

techniques will continue to help deal with future challenges in the grid due to larger 

penetration of renewables [24-28].  



 

 6 

 Measurement-Based System Response Prediction Chapter 2

2.1 Introduction 

This study is to develop a measurement-based system response-prediction tool using the 

transfer function approach in order to increase the overall speed of dynamic contingency 

screening. The advantage of this technique is faster results than that which can be 

obtained through the use of simulations for large systems. Another advantage is a 

potentially higher accuracy than existing model-based tools. This is because traditional 

circuit models are unable to include all possible details, especially as they relate to loads 

and may not be practical to update in real time. The assumption for this method to work 

effectively is the system under study is linear. This condition is met in the majority of 

situations where disturbances are small. For example, a trip of 2000 MW in the Eastern 

Interconnection (EI) is considered a small event except at the buses next to the trip. 

There are two primary approaches for the study of power system dynamics: the time 

domain simulation approach and the measurement-based approach. Time-domain 

simulation [30], based on models of system equipment, is a sophisticated method for 

dynamics analysis, and there are commercial packages available, e.g., PSS/E, PSLF, 

DSATools, etc. It is usually used to perform "what-if" simulations to check the system 

behavior and control strategies. A reliable time-domain simulation should be performed 

with a very detailed model of the studied system. However, for dynamics prediction, an 

accurate model cannot be easily obtained. Thus, the power system model is not accurate 

enough, especially with respect to the loads. With constantly changing power system 
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topology and operation status, it is not yet feasible to update power system models in real 

time; therefore, the result of model-based simulation is not reliable [31]. Meanwhile, it is 

time-consuming to simulate very large and complex systems. Even with an accurate 

model, model-based simulation can hardly be used for online dynamics prediction.  

Benefiting from the accurate timing technology of the Global Positioning System (GPS), 

Phasor Measurement Units (PMUs) [32] and Frequency Disturbance Recorders (FDRs) 

[1] are developed to monitor system dynamics with high accuracy. Since PMU data are 

calculated directly from the measured voltage and current waveform, PMU 

measurements could reflect actual system conditions more authentically. Without 

knowledge of system parameters, some papers propose dynamics response prediction 

methods based on polynomial models, trigonometric functions, and reduced system 

models. The AutoRegressive (AR) model [33] and artificial intelligence based methods 

are also used for dynamics analysis and prediction [34].  

Here we use a Multivariate AutoRegressive (MAR) model to predict dynamics from 

multiple measurement signals and formulate a systematical approach that can be used for 

online applications. 

2.2 Prediction Model with Autoregressive Model 

System Identification (SI) is an important technology that can be used to study a system 

with limited knowledge of its dynamic characteristics [35]. Basically, SI extracts system 



 

 8 

behaviors with measurement data from finite probes. For power systems, the probes can 

be PMUs or Frequency Disturbance Recorders (FDRs). 

Since the disturbance information (the exact disturbance location, type, and severity) 

cannot be readily measured, a Multi-Input Multi-Output Multivariate AutoRegressive 

(MIMO MAR) model was used in this part to develop the measurement-based dynamics 

prediction tool. 

In order to make the MAR model practical for a system with a large number of PMUs, a 

model reduction technique was used to reduce the model complexity while keeping the 

prediction accuracy. 

The response-prediction tool developed in this research was achieved by following three 

steps, which are outlined below and are further explained in following sections. 

1) Define prediction model structure. This is the basis of the prediction model and is 

done by choosing the Multivariate AutoRegressive (MAR) model as the basic 

model.  

2)  Construct the prediction model with measurement data. This is critical for 

developing the prediction model. By training the MAR model, a prediction model 

can be extracted to mimic power system dynamics. 



 

 9 

3) Design prediction procedures with the developed prediction model. With the 

trained MAR model, proper prediction procedures can be designed to predict 

power system dynamics. 

2.2.1 Basics of System Identification 

A general system identification transfer function structure is shown: 
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Here, y(t) is the output signal which is the observable (measurable) system response of 

interest, u(t) is input signal which is a disturbance signal of the system or a stimuli 

manipulated by the observer, and e(t) is a sequence of independent random variables. na, 

nb, nc, nd, and nf are the orders of each part. q
-1

 is a backward shift operator and q
-1

y(t)= 

y(t-h).  

The interactions between input signals and the output signal is characterized by A(q), 

B(q), C(q), D(q) and F(q). With different combinations of signals, different observation 

models can be developed. For example, if B(q)=1, F(q)=1, C(q)=1 and D(q)=1, (2-1) is a 

univariate AutoRegressive (AR) model. If C(q)=1, D(q)=1 and F(q)=1, (2-1) becomes an 
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AutoRegressive model with eXogenous inputs (ARX) which was used in the 2012 EPRI 

report [33].  

For a physical system, disturbance signals are such physical quantities as voltage 

magnitude of a specific disturbance. They fall into two categories: those are directly 

measured, and those are unmeasured but observable through output signals. Measured 

disturbance signals are mathematically the same as stimuli signals expressed as u(t). 

Other disturbance signals are usually modeled with random sequences e(t). It should be 

noted here that the "disturbance signal" used for SI is different from power system 

"disturbances". To avoid confusion about the "disturbance signal" and power system 

"disturbance", "event" instead of "disturbance" is used in the following parts to describe 

the changing power system, e.g., load increase, and generation trip. 

For power systems, dynamics response of frequency, voltage magnitude and phase angle 

is of key interest and thus can be chosen as output signals of the observation model (2-1). 

Though they can be directly measured with PMUs or FDRs, the disturbance signals of the 

event, i.e., input signals, are hard to measure due to the diversity of events. It is 

impractical to deploy measurement units at all possible locations. With only output 

signals, the univariate AR model is used in some research to model angle dynamics. 

However, the univariate AR model describes only the characteristics of each output 

signal individually. It is desirable to develop an observation model in order to describe 

the characteristics and interaction of all measured signals systematically.  
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2.2.2 Multi-input Multi-output MAR Model 

In the 2012 EPRI report, the ARX model used for dynamics estimation is a multi-input 

single-output model. However, for dynamics prediction, a prediction model should be 

built to reflect the interaction between different measurement signals. For a synchronized 

power system, all physical quantities, e.g., voltage magnitude of each bus, bus frequency, 

generator outputs, etc, interact with each other via physical laws. In other words, the 

dynamics of a given measurement signal affects and is affected by other measurement 

signals. Intuitively, an observation model can be developed to model the interaction 

between those measurement signals by choosing one signal as the output signal and 

treating others as input signals. 

With p interactional measurement signals y1(t), …, yp(t), if yi(t) is chosen as an output 

signal and all other signals are treated as input signals, a Multi-Input Single-Output 

(MISO) MAR model with C(q)=1, D(q)=1 and F(q)=1 can be developed as 

         
1

p

i i ij j i
j j i

A q y t B q y t e t
 
 
，

.                                   (2-2) 

The MAR model is similar to ARX model except the input signals are, in fact, measured 

responses of other signals. Expanding (2-2) yields 

     
=1 1 =1

+ ( )
bjiai

nn p

i ik i ijk j i
k j j i k

y t a y t kh b y t kh e t
 

     
，

,                       (2-3) 

where nai is the order of signal yi(t) and nbji is the order of signal yj(t) when yi(t) is the 

output signal and yj(t) is the input signal. k is the index of time delay. 
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In the MAR model, the orders of each signal can be different. For simplicity, a uniform 

order n can be chosen for all signals. With this manipulation, (2-3) can be rewritten as 

     
=1 1 =1

( )+
pn n

i ik i ijk j i
k j j i k

y t a y t kh b y t kh e t
 

      
，

.                          (2-4) 

or 

     
1 1

p n

i ijk j i
j k
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    .                                           (2-5) 

where biik = -aik. 

Equation (2-5) can be further expressed in the vector form as 

     
1

p

i ij j i
j

y t t e t

 b y                                                       (2-6) 

or 

     
1

p T T
i j ij i

j

y t t e t

 y b ,                                                 (2-7) 

where 

     1,..., , ,...,
T

ij ij ijn j j jb b t y t h y t nh         b y . 

and superscript 
T
 indicates transpose. 

In the MAR model, there is no difference between the output signal yi(t) and other signals 

in respect to mathematical status. So, MAR models with other signals as the output signal 

can be developed as follows 
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 .                                                (2-8) 

Let      1 ,...,
T

pt y t y t   y , a Multi-Input Multi-Output (MIMO) MAR model can be 

written as 
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.                                     (2-9) 

Since the MISO MAR model (2-7) is part of the MIMO MAR model (2-9), (2-7) can be 

treated as a sub-model of the MIMO MAR model (2-9) and is denoted as "sub-model i".  

2.2.3 Model Training 

The MIMO MAR model (2-9) is comprised of p sub-models, and can be developed by 

training each sub-model separately. For sub-model i of (2-7), m-n equations can be 

written as (2-10) with an event of m measurement data points, 
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                                                 (2-10) 

It can be re-written as 

i i i i Y A B E ,                                                  (2-11) 

where 
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. 

To get the best MAR model using (2-11), the error part Ei should be minimized. 

Parameter Bi can be estimated with the least-squares error estimator to minimize the error 

part Ei, 

 
-1

= T T

i i i i iB A A A Y .                                         (2-12) 

It should be reminded that since the MAR model used is a linear model, Bi can capture 

the dynamic behavior of the system that is excited in the event for the model 

construction. 

When the system reaches a new steady state for t∞, the MISO MAR model (2-9) can 

be rewritten as 

     y Cy                                                 (2-13) 

or 

    0  I C y ,                                            (2-14) 

where 
1

n

ij ijk
k

c b

 , and I is the p×p identity matrix. 

It is clear that, the new steady state must be yi(∞)=0 for i=1,…,p. However, it is seldom 

for directly measured signals to approach 0 when a new steady state is reached. The 
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steady state value is mostly determined by the trend part of a time series which is a slow, 

gradual change in some properties of the series over the whole time window. To fulfill 

the condition at t∞, the trend part of measured signals must be removed. 

There are different detrending methods such as first differencing, curve fitting, and digital 

fitting. The first differencing method is a kind of high pass filter, and is good enough in 

most cases. In this study the first differencing method is used to remove signal trends and 

is defined as 

     i i iy t x t x t h   ,                                   (2-15) 

where xi(t) is the measurement signal, and yi(t) is the detrended signal. 

For dynamics study, we focus on the dynamics of the original signal xi(t) instead of the 

detrended signal yi(t). To recover the original signal from the detrended signal, an inverse 

form of first differencing can be derived as 

     i i ix t y t x t h   .                               (2-16) 

It is clear that the recovery equation (2-16) depends on the current detrended signal yi(t) 

and the historical data xi(t-h) which is already known at time t. So the detrending method 

used can be easily implemented for field applications.  
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2.2.4 Design Prediction Procedure 

In (2-3), the time delay index k starting from 1 and yi(t) is totally determined by historical 

data, i.e., data at a time prior to t. So, equations (2-3)-(2-9) give the one-step prediction of 

the studied dynamic system. 

In equation (2-9), the random part e(t) corresponds to the unmeasured disturbance signals 

and is hard to model. For simplicity, the ei(t) part is neglected and the MAR model 

becomes 
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                               (2-17) 

or 

   t ty BY ,                                                 (2-18) 

where 
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Once the MAR model is constructed, dynamics can be predicted recursively as in the 

flowchart in Figure  2-1, where tmax is the length of study time window. Since the ei(t) part 

is neglected, the prediction error may accumulate as t advances. 

Form Y(t)=[y1(t)
T
,…,yp(t)

T
]
T

Obtain original signal xi(t) at time 

h,…,nh after event for i=1,…,p

Get detrended signal yi(t)=[yi(h),…,yi(nh)]
T 

for i=1,…,p

Predict dynamics at time t with y(t)=BY(t)

Set t=t+h

t>tmax

Exit

Update yi(t)=[yi(0),…,yi((n-1)h)]
T 

for i=1,…,p

Recover original dynamics from predicted 

detrended dynamics

Y

N

1

2

3

4

5

6

7

9

8

10

Set t=(n+1)h

 

Figure  2-1 Flowchart for prediction 

It can be seen from Figure  2-1 that the MAR model requires n data points for prediction. 

The first n points after an event (as in step 1) contain important information of the event, 

and trigger the following dynamics. There should be only one event or operation during 

the n points. Events with more than one operation, e.g., line faults which require fault 

operation and clearing operation, cannot be modeled with the MAR model and should be 

addressed by using other methods. 
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It should be noted that the MAR model used in this study is a linear model. It can be used 

for dynamics study of events that are relatively small compared with the system capacity, 

e.g., load increase or decrease, and generation trip. Line faults that will cause the 

topology change are out of the scope of the linear model. 

2.2.5 MAR Model Reduction Technique 

Unlike the univariate AR model, the MIMO MAR model describes the interaction 

between different measurements. Theoretically, all quantities of power system are 

affected by other quantities. More measurement signals would improve the prediction 

accuracy while increasing the model complexity. 

The MISO MAR model developed with (2-4) includes n parameters for each input signal 

yj. It is called full MAR model with np unknowns. With more and more PMUs deployed, 

the number of unknowns increases linearly with measurement number p. Though the 

MAR model is linear, too many unknowns may lead to a huge computation burden and 

model complexity, and thus prevent the full MAR model from being implemented for 

online applications. 

The increase of an unknown number leads to a possible problem of under-determinacy. 

There are m-n equations (constraints) but np unknowns in (2-4) for a MISO MAR model. 

If m-n<np (or m-n≥np and Ai is singular), (2-4) is underdetermined and mathematically 

unsolvable. To overcome this difficulty, either the data point number should be increased 

or the unknown number should be reduced. However, m cannot be increased arbitrarily. 

In most cases, disturbance is damped in 20s or shorter. The time window length for 
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model training is usually between 10s and 20s. Time windows that are too long may 

include data points of a new steady state and make Ai singular. Under a specific PMU 

reporting rate, data length m is limited. So m cannot be increased unless the PMU is 

reporting at a higher rate. It is more practical to reduce the number of unknowns than to 

increase the measurement data length. 

To summarize, the number of unknowns of the full MAR model should be reduced to 

make the MAR model less complex and easy to train.  

Since the number of unknowns is np, there are two direct ways to reduce model 

complexity of a MISO MAR model. One way is to reduce model order n. However, n is a 

key parameter of the MAR model, and dynamics prediction accuracy is greatly affected 

by model order. In general, higher order usually yields better training accuracy and 

prediction accuracy. To keep high prediction accuracy, model order cannot be 

dramatically reduced. 

The other way is to reduce the input signal number. The relationships between the output 

signal yi and different input signals yj are different. Those input signals more related to 

the output signal contribute more to the output signal. The Zero-delay Correlation 

Coefficient (CC) is a good choice to measure the contribution of each input signal. It is 

defined as (2-19).  
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2 2

1 1

=
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i j
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ij
m m

i j
l l

y lh y lh
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y lh y lh



 



 

.                                           (2-19) 
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Obviously, those input signals with high zero-delay CCs can be selected as effective 

input signals and other signals are completely removed from (2-4). However, the main 

problem of this method is that it does not differentiate the input signals and specific input 

terms of each input signal. For each input signal yj, there are n input terms of output 

signal yi in (2-4), i.e., bij1yj(t-h), bij2yj(t-2h), …, and bijnyj(t-nh). Those input terms are the 

delayed time series of original signal yj. If the zero-delay CC rij is high, it is not necessary 

that all the n delayed input terms of yj contribute significantly to output signal yi, and vice 

versa. It is preferable to study the contribution of each input term specifically, instead of 

the overall contribution of each input signal. 

To overcome the drawbacks of the zero-delay CC, the delayed CC of each input term is 

used in this study to find a better combination of input terms. Take a k-delay input term 

of signal yj, i.e., yj(t-kh) of (2-7), for example, the k-delayed CC between the input signal 

yj and output signal yi is 

    

    

1

22
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.                                        (2-20) 

The delayed CC examines the correlation of each delayed input term with the output 

signal. Comparing (2-19) with (2-20), it can be found that the zero-delay CC is 

symmetric, i.e., rij =rji, however, the delayed CC is asymmetric, i.e., rijk≠rjik. This leads to 

the main difference between the input selections with the two CCs. With zero-delay CC, 

if signal yj is highly correlated with signal yi, signal yj is the input signal of signal yi, and 
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vice versa. For delayed CC, if k-delay input term of signal yj is highly correlated with 

signal yi, yj(t-kh) can be selected as the input term of signal yi. However, if the k-delay 

input term of signal yi is not highly correlated with signal yj, it does not have to be 

selected as an input term of yj. So, B of (2-18) does not necessarily have symmetric 

structure when delayed CC is used for input term selection.  

With the delayed CC, it is not necessary to find the optimal model order n. With a higher 

model n, all input terms can be examined with the delayed CC and only those with the 

delayed CC higher than a user-defined threshold are selected for developing the sub-

model of yi. The delayed CC lies in the range of [0, 1] and a threshold higher than 0.9 is 

usually suggested for input term selection. 

2.3 Prediction Using Simulation Data 

The 23-bus system was chosen as the test system for the validation of the prediction 

model. The one-line diagram of the 23-bus model is shown in Figure  2-2. The simulation 

time step was set as a half cycle (1/120s). Frequency, voltage and phase angle of all 17 

PQ buses were monitored. In this section, a full MAR model of those 51 signals was 

developed with 15s-long data with an under 1% load increase event and a prediction was 

made for a 5% load increase event. The order of each signal was 13. The predicted 

voltage dynamics of bus 151 and 203 predicted frequency dynamics of bus 151 and 203, 

and the phase angle difference between bus 151 and 203 are shown in Figure  2-3. The 

diamonds indicate where the prediction starts from. Data before the diamond are 

historical data and data after the diamond are predicted. 
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Figure  2-2 One-line diagram of 23-bus model 

 

                    (a) Voltage                        (b) Angle                  (c) Frequency 

Figure  2-3 Dynamics prediction of 23-bus system 
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From Figure  2-3(a) and Figure  2-3(b), it can be seen that the predicted voltage and angle 

response are very accurate compared with actual responses. The frequency prediction in 

Figure  2-3(c) is not as good since the frequency dynamics is monotonous. It can also be 

found from Figure  2-3 that predicted dynamics is more accurate in the first few tens of 

cycles than in latter cycles, which is mainly caused by the neglect of ei(t). 

2.4 Prediction Using Real Measurement Data 

With a generation trip at about 22:52:23 on July 1, 2012 near ISO New England of US, 

frequency, voltage and angle dynamics of 14 PMUs were measured with the reporting 

rate of 30 Hz. Since voltage dynamics is local and quite noisy, a MAR model was built 

with frequency and angle dynamics with 20s-long dynamic data after the event happened. 

The order of each signal was eight and all signals were filtered with a low pass filter (3T). 

MAR models were tested with another generation trip event at about 10:25:07 on March 

21, 2013 near ISO New England. The predicted frequency of two stations is shown in 

Figure  2-4(a). The angle difference between the two stations is shown in Figure  2-4(b). 

The abscissa of the two figures is relative time with event time. 

From Figure  2-4, it can be found that the prediction result with field measurement data is 

not as good as model-based simulations. Only a prediction of the first 3-4 seconds is 

acceptable and there are mainly three reasons for the prediction inaccuracy. The first 

reason is that we only have dynamic data from 14 PMUs which are not enough for the 

model training of a large scale power system. It is desirable to have more PMUs deployed 

evenly in the power grid. The second reason is that the testing event occurred at a 
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different location from the training event which makes the trained MAR model hard to 

predict the dynamics of the testing event. With more events recorded by PMUs, it would 

be possible to develop a library of MAR models for more accurate predictions. The third 

reason is that raw PMU data are not as clean as the simulation data. Though the noisy 

PMU data were filtered with a low pass filter in this work, it was still not ideal for 

dynamics prediction. The noisy PMU data and neglect of ei(t) affected the performance of 

the prediction method. More work needs to be done with field measurement data 

including the data filtering technology. 

 

                             (a) Frequency dynamics                                               (b) Angle dynamics 

Figure  2-4 Frequency and angle difference dynamics prediction of ISO-NE 

2.5 Prediction Time Delay Tests 

As discussed before, the measurement-based system response prediction tool needs n 

(model order) data points to initiate the prediction procedure. In other words, there is a 

fixed time delay (equivalent to n data points) for prediction. With different measurement 

data reporting rates and different model orders, the prediction time delays will change.  
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In this part of the study, the prediction time delay was tested with simulation data of the 

23-bus model. Simulation data were down sampled to mimic different PMUs. Figure  2-5 

shows the influence of data reporting rates on the prediction time delay. 

 

                        (a) 30 Hz                                           (b) 60 Hz                                        (c) 600 Hz 

 

                        (d) 3k Hz                                         (e) 6 kHz                                         (f) 12 kHz 

Figure  2-5 Dynamics prediction with different reporting rates 

For the 30 Hz case in (a), with the model order of seven, the prediction delay was 14 

cycles. With the model order of 13, the prediction delay of the 60 Hz case in (b) was 13 

cycles, almost the same as the 30 Hz case. The two cases show that adequate 

measurement requires data with prediction delay of about 13 to 14 cycles to predict 

dynamics accurately if the data reporting rates are low.  

When the data reporting rate increased to 600 Hz as shown in (c), the prediction delay 

reduced dramatically to 2.4 cycles with the model order of 24. This represents a turning 
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point of the prediction delay. Cases with data reporting rates of 3 kHz, 6 kHz, and 12 kHz 

had similar prediction time delays at 1/4 to 1/3 cycles. In other words, further increasing 

the data reporting rate will not reduce the prediction delay. 

2.6 MAR Model Reduction Tests 

Suppose the data reporting rate of the 23-bus model is 30 Hz, which can be achieved by 

down sampling the 120 Hz simulation data. With 15s-long dynamic data, there are 450 

data points. If a uniform order of 13 is selected, there would be 663 (13x51) unknowns 

and it would be impossible to train a full MAR model. By selecting input terms with 

delayed CC higher than 0.9, a reduced MAR model can be built. Prediction of frequency 

and voltage of bus 151 and the angle difference between bus 151 and bus 203 are shown 

in Figure  2-6. The diamond shows where the prediction of the full MAR model starts 

when the data rate is 120 Hz, and the square shows where the prediction of the reduced 

MAR model starts when the data rate is 30 Hz. 

 

       (a) Voltage                          (b) Angle                  (c) Frequency 

Figure  2-6 Dynamics prediction of 23-bus model with reduced model 

In the reduced MAR model, there are only 44 unknowns for the sub-model of signal 1 

(frequency of bus 151). The sub-model with the most unknowns is signal 15 (phase angle 
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of bus 201), which was constituted by 190 unknowns. The number of unknowns in the 

reduced MAR model was 5030 (about 15% of full MAR model). 

The reduced model still provided good prediction results. When the data reporting rate 

was 60 Hz, there were enough data points for training the full MAR model with uniform 

order of 13. 

2.7 Conclusions  

With increasing numbers of PMUs deployed, massive measurement data give an 

alternative approach to study power system dynamics without the traditional circuit 

models. The system response-prediction tool developed in this study was purely 

measurement-based and the MAR model can be easily updated online with typical 

events. Examples show that the accuracy of prediction is high for simulated cases. A real 

measurement case is not as accurate as the simulation case, but it still provides good 

prediction results for the first few seconds. To make the MAR model practical for a 

system with a large number of PMUs, the delayed correlation coefficient was defined to 

measure the contribution of each input term with delays. This study provided a good 

guideline for the input selection and model reduction. Simulation results show that the 

reduced model can keep the prediction accuracy while reducing the model complexity. 
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 Measurement-Based System Reduction Chapter 3

3.1 Introduction 

With the infinite details especially in loads and constantly changing power system 

topology and operation status, it is not yet feasible to develop highly accurate large 

system models and update full power system dynamic models in real time. In addition, 

usually only the dynamics of a local system need to be studied while external systems can 

be reduced. Thus, dynamic equivalencing is one solution for the increasing size and 

complexity of power grids. 

A number of methods for power system dynamic reduction have been developed. The 

coherency-based methods [36-37] identify coherent generators and aggregate them into 

single or multiple equivalent generators. However, it is very difficult to find the exact 

coherent groups and the accuracy of aggregation and network reduction depends on the 

detailed model parameters. In addition, it is time-consuming and thus not appropriate for 

online applications. The selective modal analysis-based methods [38-39] simplify the 

system by using dominant modes. But they require the computation of eigenvalues of the 

system matrix which is time-consuming and it is also very difficult to determine truly 

dominant modes of the system. To overcome the restrictions of traditional approaches, 

measurement-based system identification methods [40-41] were used to reduce the 

external systems. Most of system identification-based approaches use nonlinear models 
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to represent the external systems considering the power system is nonlinear in general. 

But the nonlinear models may either be too complex or suffer convergence issues. 

Based on some of our previous studies [42-44], this study is to treat the subsystem which 

needs to be reduced as a black-box and derive the equivalent model based on measured 

data using a linear autoregressive model. The derived black-box equivalents were 

integrated with the study system to perform the dynamic simulation. This approach may 

improve the modeling accuracy of the reduced system compared with the traditional 

approach and increase the speed of dynamic simulation through system reduction.  

Results were achieved through the three methodological devices or techniques. They will 

be further explained in this chapter. 

1) System identification with measurement data. The autoregressive with exogenous 

input (ARX) model was chosen and an equivalent model was derived by training 

the ARX model. 

2) The model accuracy test with the full power system model. The derived ARX 

model was used to predict the dynamics of other events similar with the training 

event. 

3) Integrated simulation in power system dynamic simulation software. The 

developed equivalent model was integrated into the study system in PSS/E for 

dynamic simulation. 
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3.2 The ARX Model 

The mathematical structure expression of ARX model is given 
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                                      (3-1) 

where t is the sampled data number, e(t) is the system noise, uj and ky


 are the model’s j-

th input and k-th output, respectively. Ak(z) and Bjk(z) are the ARX nominator and 

denominator polynomials respectively, which are given by: 
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where nak and nbjk are the orders of the model, and j and k are the numbers of inputs and 

outputs, respectively. The model parameters of a multi-variable ARX model can be 

estimated by a linear least square technique. The least-squares estimation problem is 

solved by using QR factorization to optimize the ARX model parameters. The least-

squares loss function is defined as: 
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                                                       (3-4) 

where the equation error criterion εARX(t) is described by:  
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3.3 Model Accuracy Test with the Full Power System Model 

The general idea is shown in Figure  3-1. Area 1 is the study system and Area 2 represents 

the chosen area to be reduced. A tie line is between Area 1 and Area 2. For example, the 

voltage (v) and frequency (f) of the border bus are used as inputs; active power (P) and 

reactive power (Q) of the tie line are outputs. After training the ARX model with those 

inputs and outputs, a function (P, Q) = g (v, f) was obtained. The derived model was then 

used to predict results of other test events and its accuracy was evaluated by actual full 

model responses.  

           

Figure  3-1 Model reduction using ARX 

3.3.1 23-bus System Model 

The study system and external system were connected by three tie lines as shown in 

Figure  3-2. A generation trip at bus 206 was used for training, and generator trip at bus 

211 was used for testing. The inputs were voltage and frequency of the border buses in 

the study system. The ARX model order is six. The active power deviation of each tie 

line is shown in Figure  3-3. It shows the predicted response is very close to the actual 

response. 
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Figure  3-2 Model accuracy test on the 23-bus system 

 

                    (a) Tie Line1                                    (b) Tie Line2                                    (c) Tie Line3 

Figure  3-3 Accuracy test results of the 23-bus system 
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3.3.2 The NPCC Model 

The study system and the external system are connected by two tie lines as shown in 

Figure 3-4. A generation trip at bus 22 is used for training and generation trips at other 

buses are used for testing. The inputs are voltage and frequency of border buses in the 

study system. The ARX model order is zero (static model). The active power and reactive 

power of two tie lines are shown in Figure 3-5. Both predicted active power and reactive 

power are very accurate when compared with the actual response. 

3.3.3 The 25000-bus EI Model 

Case1: Reduced Florida Area 

The Florida area was reduced while other areas were retained as shown in Figure 3-6. A 

generation trip in the PJM area was used for training and generation trips at other 

locations used for testing. The inputs were voltage and frequency of border buses in the 

study system. The model order was 0 (static model), while the active power and the 

reactive power of one selected tie line are shown in Figure 3-7. Simulation results from 

DYNRED [45] (a commercial network reduction software) are also included in Figure 3-

7. It can be seen that the ARX estimated response was very close to the actual response 

and is more accurate than DYNRED in this case. Note that results from DYNRED 

depended on how to reduce the system. In each of the following cases, a reasonable and 

straightforward method was employed to reduce the system using DYNRED and the 

results are shown together with the ARX model. Several tests were performed, but only  
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Figure  3-4 Model accuracy test on the NPCC system 

 

                (a) Gen. trip@23                             (b) Gen. trip@24                               (c) Gen. trip@25 

Figure  3-5 Accuracy test results of the NPCC system 
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Figure  3-6 Model accuracy test on the EI system for case1 

 

                        (a) Active power of tie line                                     (b) Reactive power of tie line 

Figure  3-7 Accuracy test results of the EI system for case1 
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one test (close to the training location) result is shown in the following figures because 

results of other tests were very similar. 

Case2: Retained Florida Area 

The Florida area was retained as a whole and other areas were reduced as shown in 

Figure 3-8. A generation trip in the Florida area was used for training and generation trips 

at other locations in the Florida area have been used for testing. The inputs are voltage 

and frequency of border buses in the study system. The model order is 0 (static model) 

and the active and the reactive power of one selected tie line are shown in Figure 3-9. 

Both the ARX estimated active power and reactive power of the tie line are very accurate 

and closer to the actual response than DYNRED. 

Case3: Reduced NPCC 

The NPCC area is to be reduced and other areas are retained as shown in Figure 3-10. A 

generation trip in the TVA area is used for training and generation trips at other locations 

in the TVA area are used for testing. The inputs are voltage and frequency of the border 

buses in the study system. The model order is 0 (static model). Figure 3-11 shows the 

active power and reactive power of one selected tie line and indicates very good accuracy 

of the ARX estimated response. 
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Figure 3-8 Model accuracy test on the EI system for case2 

 

                           (a) Active power of tie line                                     (b) Reactive power of tie line 

Figure  3-9 Accuracy test results of the EI system for case2 
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Figure  3-10 Model accuracy test on the EI system for case3 

 

                       (a) Active power of tie line                                        (b) Reactive power of tie line 

Figure  3-11 Accuracy test results of the EI system for case3 
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Case4: Retained NPCC 

The NPCC area was retained and other areas were reduced as shown in Figure 3-12. A 

generation trip in the NPCC area was used for training and generation trips at other 

locations in the NPCC area were used for testing. The inputs were voltage and frequency 

of the border buses in the study system. The model order is zero (static model). Active 

power and reactive power of one selected tie line are shown in Figure 3-13. It can be seen 

that the ARX estimated response is very accurate and it has a much better accuracy than 

DYNRED for the reactive power. 

3.4 Integrated Simulation in Power System Dynamic Simulation 

Software 

In order to implement the ARX model in PSS/E, a user-defined load-related model was 

chosen because it can do the calculation of state variables and the network solution can 

calculate current injections which are dependent on the bus voltage. The procedure is 

shown in Figure 3-14. The results of the reduced model and full model are compared.  

A PSS/E user-defined load-related model was developed for the integrated simulation. 

Each tie line between the study system and the external system was replaced by 

connecting the load-related model to the border bus in the study system. In order to 

simplify the test case of input signal selection, some models were modified to retain only 

one tie line for the base case. The disturbance was a generation trip in the study system, 

and the ARX model order was zero (static model). The frequency and voltage at the 

disturbance location and interface location are shown. Note that the results in the  



 

 40 

 

Figure 3-12 Model accuracy test on the EI system for case4 

 

                     (a) Active power of tie line                                       (b) Reactive power of tie line 

Figure  3-13 Accuracy test results of the EI system for case4 
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Figure  3-14 Integrated simulation in PSS/E 

interface location were the worst case and a buffer area must be defined in real 

applications. 

3.4.1 23-bus System Model: Three Loads 

The study system and external system were connected by three tie lines as shown in 

Figure 3-15. The input of each ARX model is the voltage of the border bus of each tie 

line. The frequency and voltage at disturbance location and interface location are shown 

in Figure 3-16. 

3.4.2 23-bus System Model: One Load 

The study system and external system were connected by one tie line as shown in Figure 

3-17. The inputs of the ARX model were either voltage (v1/v2) or frequency (f1/f2) from 

2 buses near the interface. The input signals were varied to allow us to see their effect on 

the results. The frequency and voltage at disturbance location and interface location with 

input signals (v1, v2) are shown in Figure 3-18. 
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Figure  3-15 Integrated simulation of the 23-bus system 

 

        (a) Frequency at the Disturbance Location                   (b) Frequency at the Interface Location 

 

          (c) Voltage at the Disturbance Location                      (d) Voltage at the Interface Location 

Figure  3-16 Integrated simulation results of the 23-bus system 
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Figure 3-17 Integrated simulation of the 23-bus system with input signals selection 

 

             (a) Frequency at the Disturbance Location                   (b) Frequency at the Interface Location 

 

             (c) Voltage at the Disturbance Location                       (d) Voltage at the Interface Location 

Figure  3-18 Integrated simulation results of the 23-bus system with input signals (v1, v2) 
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The results of other input signals are similar with (v1, v2), and their correlation 

coefficients with the original response are listed in Table 3-1.  

Table 3-1 Results of 23-bus system with different input signals 

Input Signals f_CC_Dist f_CC_Interface v_CC_Dist v_CC_Interface 

(v1, v2) 0.9955 0.9955 0.9564 0.9084 

(v1, f2) 0.9951 0.9951 0.9714 0.9390 

(f1, v2) 0.9959 0.9958 0.9706 0.9366 

(f1, f2) 0.9943 0.9946 0.9770 0.9539 

f_CC_Dist — the correlation coefficient of frequency at the disturbance location;  

f_CC_Interface — the correlation coefficient of frequency at the interface location;  

v_CC_Dist — the correlation coefficient of voltage at the disturbance location;  

v_CC_Interface — the correlation coefficient of voltage at the interface location. 

 

3.4.3 The NPCC Model 

The study system and external system were connected by two tie lines as shown in Figure 

3-19. The inputs of the ARX model are either voltage (v1/v2) or frequency (f1/f2) from 2 

buses near the interface. The input signals are varied to see their effects on the results. 

The frequency and voltage at disturbance location and interface location with input 

signals (v1, f2) are shown in Figure 3-20. 

The results of other input signals are similar with (v1, f2) and their correlation 

coefficients with the original responses are listed in Table 3-2. 
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Figure  3-19 Integrated simulation of the NPCC system with input signals selection 

 

     (a) Frequency at Disturbance              (b) Frequency at Interface1             (c) Frequency at Interface2 

 

     (d) Voltage at Disturbance                (e) Voltage at Interface1                    (f) Voltage at Interface2 

Figure  3-20 Integrated simulation results of the NPCC system with input signals (v1, f2) 
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Table 3-2 Results of NPCC system with different input signals 

Input 

Signals 

f_CC_ 

Dist 

f_CC_ 

Interface_1 

f_CC_ 

Interface_2 

v_CC_Dist v_CC_ 

Interface_1 

v_CC_ 

Interface_2 

(v1, v2) 0.9943 0.8561 0.9224 0.9999 0.8708 0.7664 

(v1, f2) 0.9986 0.9728 0.9792 1.0000 0.9612 0.8929 

f_CC_Interface_1 — the correlation coefficient of frequency at the interface location of one tie line;  

f_CC_Interface_2 — the correlation coefficient of frequency at the interface location of the other tie line.  

Note: the results of (v2, f1) and (f1, f2) diverge in this particular case, and, thus, are not shown in the table. 

 

3.4.4 The 25000-bus EI Model 

The study system and external system are connected by one tie line as shown in Figure 3-

21. The inputs of the ARX model were either voltage (v1/v2) or frequency (f1/f2) from 

two buses near the interface. The input signals are varied to see their effects on the 

results. The frequency and voltage at disturbance location and interface location with 

input signals (v1, v2) are shown in Figure 3-22. 

The results of other input signals were similar with (v1, v2) and their correlation 

coefficients with the original responses listed in Table 3-3. 

3.5 Conclusions 

Our study has shown that measurement-based system reduction could be an attractive 

approach to overcome some disadvantages of the traditional model-based technique and 

increases the accuracy and speed of power system dynamic simulation. The ARX model 

was employed to reduce external systems, and the model accuracy was tested on three 
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Figure  3-21 Integrated simulation of the EI system with input signals selection 

 

          (a) Frequency at the Disturbance Location                      (b) Frequency at the Interface Location 

 

             (c) Voltage at the Disturbance Location                         (d) Voltage at the Interface Location 

Figure  3-22 Integrated simulation results of the EI system with input signals (v1, v2) 
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Table 3-3 Results of EI system with different input signals 

Input Signals f_CC_Dist f_CC_Interface v_CC_Dist v_CC_Interface 

(v1, v2) 0.9999 0.6708 1.0000 0.6197 

(v1, f2) 0.9995 0.8327 0.9999 -0.2280 

(f1, v2) 0.9993 0.8027 0.9999 -0.1531 

(f1, f2) 0.9989 0.5696 0.9998 0.3325 

 

levels of systems, i.e., the 23-bus system, the NPCC system and the EI system. Results 

show that the ARX model was very accurate in prediction of similar disturbance events. 

A PSS/E user-defined load-related model was developed to integrate the ARX model 

with the study system and was implemented on those three system levels. One tie line or 

multiple tie lines between study systems and external systems were replaced by the load-

related model. Frequency and voltage in both the disturbance location and interface 

location were shown and a preliminary study of input signals selection was conducted. 

Future work includes using a higher-order ARX model, defining the buffer region and a 

more complete input signals selection study. 
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 Measurement-Based Generator Dynamic Chapter 4

Model Validation 

4.1 Introduction 

The electric power industry relies heavily on power system dynamic models to perform 

extensive stability studies and to make critical decisions such as determining operating 

limit settings and corrective plans [46-48]. The accuracy of power system models is 

essential to safe power system operation and planning. However, several recent studies 

revealed that dynamic models fail to capture key characteristics of real systems [49-53]. 

The inconsistency between simulation and reality can lead to incorrect engineering 

judgement that eventually causes poor system dynamic performance, over or under 

utilization of resources, and even system instability. 

Traditionally, as one of the most important components in system dynamics, generator 

model validation is conducted through staged testing, which require the tested equipment 

to be taken offline. Due to testing costs and economic opportunity loss, staged tests are 

usually performed every five to ten years. In contrast, generator operation modes could 

change within a day. Therefore offline testing methods cannot be guaranteed to maintain 

an up-to-date and accurate model for dynamic representation. This limitation led to recent 

studies focusing on online, PMU-based validation approaches [54-56]. In PMU-based 

approaches, a PMU is installed at the point of connection. Its event data are replicated by 

injecting them into a dynamic model through the use of hybrid simulation tools. 

Simulated generator responses are then compared to actual responses, validation, and 
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model parameter adjustment, calibration, is done to best match the simulated and actual 

responses. However, these approaches focus on the calibration aspect while ignoring 

many key aspects of the validation portion. This paper presents a more detailed analysis 

on model validation and hybrid simulation to explore the potentials and limitations of 

such a method. 

4.2 Validation Procedure and Simulation Method 

Hybrid simulation takes real world measurements and incorporates them into the model. 

The theory behind hybrid simulation for generator model validation is that generator with 

a certain voltage magnitude and angle at its terminals will produce a set amount of real 

and reactive power. Thus, if voltage and angle measurements are injected to the generator 

terminals, the generator model real and reactive power curves should follow the real and 

reactive measurements. 

The validation procedure is as follows: 

1) Selecting events and preparing associated data (PMU, generator and GSU); 

2) Adopting an appropriate simulation method, the simulated response of the 

generator model against the disturbance recorded by PMUs; 

3) If noticeable mismatch is observed, specifying influential parameters; 

4) Use multiple events to confirm; 

5) Contact generator owners for further analysis. 
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The overall methodology of simulation is shown in Figure 4-1. The PMU records the 

voltage and current phasors, frequency, active and reactive power at the point of 

connection (POC). The voltage phasor is injected in the simulation through the use of a 

controllable voltage source at the POC. The controllable voltage source was created 

through an infinite machine and a lossless, ideal transformer with a tap changer and phase 

shifter. This method is known as the phase shifter method [57]. 

Active power and reactive power from the hybrid simulation are compared with the 

measurement values of the PMU to determine if the generator model is valid. A 

significant mismatch in the responses indicates the need for further analysis. 

The tool developed for system validation is a Python-based PSS/E tool that provides the 

ability to easily validate any generator with a number of events 

 

Figure  4-1 Generator model validation using hybrid simulation 
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4.3 Validation Using Simulation Data 

4.3.1 Effects of PMU Reporting Rates and Event Selection 

In order to study the potentials and limitations of the method, simulation data are used 

first. Certain events, such as line faults, generation trips, etc., were created in Eastern 

Interconnection (EI) model and the corresponding measurements were recorded to be 

used for the validation portion. Note that since the measurement data are recorded from 

the simulation, the parameters of the target generator are "perfect". 

Two frequencies are involved in the study. One is the PMU reporting rate, typically it is 

30/60Hz; the other is the time step used in the simulation software. It is typically larger 

than 120Hz and needs to be faster than the system dynamics, otherwise numerical issues 

may arise. Injecting the PMU measurements at its reporting rate would result in the 

generator seeing large steps at 30Hz intervals which would cause large inaccuracies. The 

PMU data should thus be interpolated to match the simulation frequency to help alleviate 

these steps. Linear interpolation is used here. 

In this study, the EI and hybrid model simulation frequency is set to 240Hz. The PMU 

reporting rate is an important factor and lower reporting rates would introduce larger 

errors due to loss of information. The EI simulation output was down-sampled to various 

frequencies in Figure 4-2 to study the effect of reporting rates of PMUs on model 

validation. The event shown by Figure 4-2 is a 230kv 6-cycle line fault nine buses away 

from the POC of the generator.  
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(a) Active power 

 

(b) Reactive power 

Figure  4-2 Simulation output with different PMU reporting rates for a line trip event 
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It can be seen that the 240Hz and 120Hz results match the benchmark well while the 

60Hz and 30Hz reporting rates show a substantial mismatches. This mismatch may trick 

calibration techniques to calibrate parameters which they incorrectly think do not match 

the actual generator parameters. Thus, 60Hz and 30Hz PMU data of this event should not 

be used for validation. In addition, those mismatches caused by the reporting rate are 

dependent on the events. Figure 4-3 shows the result for a nearby generation trip using 

same procedure. In this event, even the 30Hz data mismatch is small after the first half 

swing and could therefore be used for validation only considering dynamics afterwards. 

In general, the more severe the event is and the fewer points captured during the transient 

period, the larger the error introduced by PMU measurements becomes. Thus special 

attention needs to be paid when the event is chosen 

4.3.2 Parameter Analysis 

Parameter analysis was initially conducted to see if changes in parameters were visible on 

the output of the hybrid simulation. Each parameter of each generator component was 

slowly changed by a set amount until a detectable mismatch was observed (based on 

engineer judgement). Simultaneous parameters were then changed together to study the 

masking effect. 

Figure 4-4 include results for both active and reactive power after applying varied 

parameter changes ranging from a 5% to 40%. These tables specifically study a machine 

with a GENROU machine model, AC8B exciter model, and a PSS2B stabilizer model. 
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(a) Active power 

 

(b) Reactive power 

Figure  4-3 Simulation output with different PMU reporting rates for a nearby generation trip event 
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(a) Machine model (GENROU) 

 

(b) Exciter model (AC8B) 

 

(c) PSS model (PSS2B) 

Figure  4-4 Parameter analysis results 
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Red indicates the mismatch is visible (Y) while brown is not visible (N). (YN) is between 

(Y) and (N). Note that if a smaller change is visible, a larger change will also be visible. 

Though the results vary for different generators and models, these tables and others like 

them can be used as a guideline for the validation procedure and to tell what level of 

accuracy to expect in each parameter. It can be seen that not all parameter inaccuracies 

may be detectable. Thus a PMU-based method may not be able to completely guarantee 

that all parameters are accurate. 

4.3.3 Masking Effect 

Since there are so many parameters in a generator that are all coupled together in various 

ways, it is highly possible that the error introduced by one parameter could be masked by 

the error introduced in another parameter so that the mismatch in the output is not 

noticeable. This phenomenon is known as the masking effect.  

For example, the effects of T7 and KS2 in the PSS2B model were found to have similar 

results in the parameter analysis. Thus, creating opposite errors in the two would result in 

opposite behaviors which may cause a masking effect. The results of varying these two 

parameters both individually and simultaneously are shown in Figure 4-5. It is observed 

that they create a masking effect, i.e. the mismatch is observable by a change of one 

parameter but it is not observable by a change of both. This indicates another limitation 

of this and any online validation method. 
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(a) Active power 

 

(b) Reactive power 

Figure  4-5 Masking effect in PSS model (PSS2B) 
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4.4 Validation Using Real Measurement Data  

This section presents validation results using real PMU data. Initial condition tuning has 

to be done prior to inserting the actual measurement data to make sure the validation 

model’s dynamic initial conditions match that of the generator at the beginning of the 

measurement window. Two separate units, Unit 1 and Unit 2, are each tested using two 

different events. 

Unit 1 includes a machine model (GENROU), an exciter model (ESST1A), a governor 

model (IEEEG1), and is validated using two events. Both events are generation trips that 

occurred on the system while the PMU was measuring at the POC of the generator. Fig. 5 

shows the first event, generation trip 1. It can be seen that the responses match quite well. 

It was discovered with this event that either the governor dead-band for this particular 

machine is modeled incorrectly or the governor was off as can be seen by the constant 

power drift in Figure 4-6. Such a phenomenon is also reported in [19]. Thus the governor 

in the model is turned off making the simulation response match the real response much 

better. 

The second case, generation trip 2, tests the response of the same generator for a different 

event and is shown in Figure 4-7. In this case, the real power response mismatch is small, 

but the reactive power response gains an offset after the dynamics. It was not determined 

which parameter caused this response difference or operation of additional reactive 

power devices in the plant during the event, but it is most likely something in either the 

stabilizer or the exciter that needs to be further investigated if no additional devices were  



 

 60 

 

(a) Active power 

 

(b) Reactive power 

Figure  4-6 Validation of Unit#1 using generation trip#1 
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(a) Active power 

 

(b) Reactive power 

Figure  4-7 Validation of Unit#1 using generation trip#2 
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used. The point of note is that for one machine, one event gave a good validation after the 

governor was turned off while another event showed that some other component had 

inaccuracies that the first event did not capture. As such, careful consideration on the 

number of events used needs to be taken if validation or calibration were to be performed. 

Unit 2 includes a machine model (GENROU), an exciter model (AC7B), a governor 

model (TGOV1), and a PSS model (PSS2A). As with the previous unit, the governor is 

turned off. Figure 4-8 and 4-9 show the validation results using two generation trip 

events. In this case, the generator’s model matches well in both events for both real and 

reactive responses. 

4.5 Conclusions 

Measurement-based generator dynamic model validation is a promising tool which could 

be used for more frequent model validation. This tool is developed using PSS/E and 

Python so that it simplifies the procedure and eventually could perform validation 

automatically once proper measurement data are available. This chapter presents a 

detailed analysis of the validation procedure, including both potentials and limitations of 

this method. By using the simulation data, the effect of different PMU reporting rates and 

event selection, parameter analysis and masking effect are discussed. Finally, the 

validation utilizes real PMU data. It shows the necessity of using multiple events and the 

caution of using automatic calibration without thought to the validation. 
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(a) Active power 

     

(b) Reactive power 

Figure  4-8 Validation of Unit#2 using generation trip#1 
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(a) Active power 

 

(b) Reactive power 

Figure  4-9 Validation of Unit#2 using generation trip#2  



 

 65 

 Application of Power System Measurement for Chapter 5

Digital Authentication 

5.1 Introduction 

The so-called Electric Network Frequency (ENF) Criterion is based on an observation 

made by Grigoras [58] in 2003. This observation concerns a "hum" that is frequently 

found in digital recordings. In his 2003 paper Grigoras showed that this hum is related to 

the sinusoidal voltage signal that runs through electric power grids. This sinusoidal 

voltage signal is approximately constant across the whole grid. The importance of this 

observation comes from the fact that the frequency of this grid sinusoidal voltage signal, 

at any instant of time, is dependent on the amount of power being generated and the 

amount of power being consumed across the grid. Since the amount of power that is 

consumed at any instant of time is random, a sequence of the frequencies of this hum will 

be a random process. Consequently, given the "uniqueness" of patterns that occur in 

random processes, it ought to be possible to extract a frequency sequence from a 

recording, the target recording, and compare this frequency sequence against a database 

of grid reference frequencies to determine the time when a recording was made. 

The two step process proposed by Grigoras makes up what will be called the ENF 

analysis process. The first step, where frequencies are estimated from the target 

recording, will be called the ENF extraction step. The output of this step is the target 

sequence. In the second step, this target sequence is compared to subsequences from a 

grid reference database. This step usually involves some type of distance measure. The 
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subsequence of the grid reference database which has the minimum distance (maximum 

distance) to the target sequence is considered to be the "matching" sequence in the grid 

reference database. The time that the matching sequence occurred is considered to be the 

time that the target recording was made. This whole process of taking the target sequence 

generated by the ENF extraction step and creating a "match" with a subsequence in the 

grid reference database will be called the ENF comparison set. 

Since the ENF Criterion was first proposed, numerous papers [59-62] have been written 

on using this methodology for doing forensic authentication of digital recordings. Since 

there are relatively few tools for doing the forensic examination of digital recordings, the 

ENF Criterion seemingly represents a valuable new tool for doing this authentication. 

The goals of this research are to improve the understanding of the whole ENF analysis 

process using the synchronized, widely deployed, and high resolution FNET/GridEye 

system. To this end four research studies have been conducted. These studies have 

resulted in the following: 

• A new ENF comparison algorithm that removes the effects of oscillator error 

[63]. 

• A better understanding of the phenomenology of how grid sinusoidal voltage 

signals get imbedded into digital recordings [64]. 

• An ENF based algorithm for detecting tampering in digital recordings [65]. 
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• A frequency localization study that may determine the location when the digital 

recording was made. 

5.2 Removing the Effects of Oscillator Error from ENF Comparisons 

5.2.1 Overview 

Oscillators power all digital recorders. They are the fundamental element in the clocks 

that is used to time when analog-to-digital conversions are made. Most oscillators do not 

run exactly at their specified frequencies. These timing errors affect both the values of the 

frequency estimates as well as the times between frequency estimates. In fact, a number 

of investigators have observed offsets between the frequencies making up a target 

sequence and the frequencies making up grid subsequences. While the investigators 

seemingly did not know it at the time, these offsets were caused by oscillator errors. To 

address these offsets, one of these investigators suggested using the correlation 

coefficient as the comparison distance measure. The investigator did this because the 

correlation coefficient is seemingly insensitive to oscillator error. However, it has other 

problems associated with its use, e.g., it is not really a metric under the standard 

mathematical definition of this term. Consequently, it was decided that a different 

approach was needed to remove these errors. This led to the creation of a new 

comparison algorithm, one that can remove the effects of oscillator errors from 

comparisons. The algorithm developed is an iterative nonlinear least squares method that 

attempts to overlay a target sequence on a grid reference subsequence. It is called the 
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Oscillator Error Correction/d_σ ̅  Metric algorithm. This algorithm was implemented and 

tested. It always converged when using it in millions of comparisons that were made. 

5.2.2 Methods 

The Oscillator Error Correction /𝑑�̅� Metric algorithm has four inputs.  The first input is 

denoted by 𝐺𝑟 where 𝐺𝑟 =  {(𝑡𝑟𝑖
, 𝑓𝑟𝑖

), 𝑖 = 1, 2, … , 𝑁} is the subsequence of grid reference 

data and where, for each ordered pair in 𝐺𝑟 , 𝑡𝑟𝑖
is the time 𝑓𝑟𝑖

 was measured. The second 

input is the target sequence, 𝑇 =  {(𝑡𝑇𝑘

(0)
, 𝑓𝑇𝑘

(0)
), 𝑘 = 1, 2, … , 𝐾} where, for each ordered 

pair in T, 𝑡𝑇𝑘
 is the time that the frequency 𝑓𝑇𝑘

 was measured. Note that both the time, 

𝑡𝑇𝑘
tTj

, and the frequency, 𝑓𝑇𝑘
fTj

, values will change from iteration to iteration so the 

superscript (0) indicates their starting value.  The third input is the mean of the target 

frequency values, �̅�𝑇
(0)

. It is computed using  

�̅�𝑇
(0)

=  
1

𝐾
 ∑ 𝑓𝑇𝑘

(0)
 .𝐾

𝑘=1                                          (5-1) 

Again, since this mean value will change for each iteration, the superscript (0) indicates 

the starting, i.e., iteration 0, value. The fourth and final input value is 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

which gives the maximum number of iterations.   

Step 1.  Set 𝑑𝑒𝑙𝑡𝑎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1, and 𝑙 = 1. 

Step 2.  If 𝑙 = 𝑚𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 exit with failure. 
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Step 3.  Find {(𝑡𝑇𝑘

(𝑙−1)
, 𝑓𝑟𝑘

(𝑙−1)
), 𝑘 = 1, 2, … , 𝐾} , i.e., the sequence of grid reference 

frequencies that occur at exactly the times given in the target sequence, using 

𝑡2 =  𝑡𝑟𝑖
                                                         (5-2) 

𝑓2 =  𝑓𝑟𝑖
                                                         (5-3) 

𝑡1 =  𝑡𝑟𝑖−1                                                     (5-4) 

𝑓1 =  𝑓𝑟𝑖−1                                                     (5-5) 

𝑡 =  𝑡𝑇𝑗

(𝑙−1)
                                                    (5-6) 

𝑓𝑟𝑗

(𝑙−1)
=  

𝑓2− 𝑓1

𝑡2− 𝑡1
 (𝑡 −  𝑡1) +  𝑓1                                    (5-7) 

   where, 𝑡𝑟𝑖−1 <  𝑡𝑇𝑗

(𝑙−1)
≤ 𝑡𝑟𝑖

.   

Step 4.   If  𝑑𝑒𝑙𝑡𝑎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ≤ 1.0 × 10−13 then go to Step 10. 

Step 5.  Compute the mean of {(𝑡𝑇𝑘

(𝑙−1)
,  𝑓𝑟𝑘

(𝑙−1)
), 𝑘 = 1, 2, … , 𝐾} using 

�̅�𝐺
(𝑙−1)

=  
1

𝐾
 ∑ 𝑓𝑟𝑘

(𝑙−1)𝐾
𝑘=1                                       (5-8) 
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Step 6.   Let 𝑓𝑎𝑐𝑡𝑜𝑟 =  
�̅�𝐺

(𝑙−1)

�̅�𝑇
(𝑙−1)  and let  

{(𝑡𝑇𝑘

(𝑙)
, 𝑓𝑇𝑘

(𝑙)
), 𝑘 = 1, 2, … , 𝐾} = {(𝑡𝑇𝑘

(𝑙−1)
𝑓𝑎𝑐𝑡𝑜𝑟, 𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑓𝑇𝑘

(𝑙−1)
⁄ ), 𝑘 = 1, 2, … , 𝐾}  (5-9) 

Step 7.  Let �̅�𝑇
(𝑙)

= 𝑓𝑎𝑐𝑡𝑜𝑟 × �̅�𝑇
(𝑙−1)

 

Step 8.  Let 𝑑𝑒𝑙𝑡𝑎𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑎𝑏𝑠(�̅�𝑇
(𝑙)

−  �̅�𝑇
(𝑙−1)

)  and 𝑙 = 𝑙 + 1. 

Step 9.   Go to Step 2. 

Step 10. Compute the distance between the target and grid subsequence using the 𝑑�̅� 

metric  

𝑑�̅�(𝑇(𝑙−1), 𝐺𝑟
(𝑙−1)

) =  sqrt (
1

𝐾
 ∑ (𝑓𝑟𝑘

(𝑙−1)
−  𝑓𝑇𝑘

(𝑙−1)
)

2
𝐾
𝑘=1 )                  (5-10) 

             where both 𝑓𝑟𝑘

(𝑙−1)
frm

(l-1)
 and 𝑓𝑇𝑘

(𝑙−1)
fTm

(l-1)
 occur at time 𝑡𝑇𝑘

(𝑙−1)
tTm

(l-1)
 for 𝑘 =

               1, 2, … , 𝐾. 
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5.2.3 Results 

Consider the following experiment.  The output of an analog device, i.e., the Electric 

Network Signal Conversion (ENSC) Box, that reduces the voltage level of a signal 

coming out of a standard wall power outlet and inputs it into two different sound cards.  

One of these is an external sound card. This external device is connected to the analysis 

computer by a USB-2 interface that transfers converted digital data to the computer in 

real-time. Note, the operation of this external device is based solely on its own internal 

clock.  The second sound card receiving this analog signal is an internal sound card 

contained in a laptop computer.  This sound card also has its own clock and collects data 

based on the output of its clock.  Both cards were setup to collect data at 44,100 samples 

per second.  The times that the two recordings were started was recorded.  Both 

recordings were approximately 2,850 seconds long.  After these two data sets were 

collected, one set from each sound card, a short time DFT based ENF extraction method 

similar to the one described by Cooper [66], i.e., the DFTVV algorithm, was applied to 

each recording.  The window size used was 2 seconds and the hop size was 0.4 seconds. 

The important point here is that both recordings were processed in exactly the same 

manner to obtain each recording’s ENF sequence.  

Plots of the ENF estimates obtained from these two recordings are shown in Figure 5-1. 

As will be observed, the sequences of frequency estimates do not perfectly overlay onto 

one another as one might expect that they should.  Rather they are separated by what 

appears to be a constant frequency offset, the same type of offset that was reported in the  
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Figure  5-1 A plot of the ENF sequences computed using the same ENF extraction algorithm applied to two 

recordings made from the same grid sinusoidal voltage input signal 

studies reported in [66-69]. In this controlled experiment the only possible cause for the 

observed offset is that the two sound card clocks and, hence, the two sound card 

oscillators are running at slightly different speeds.   

These extracted ENF sequences were then put into the Oscillator Error Correction/d_σ  ̅ 

Metric algorithm. The sequence computed from the recording made from the data 

collected by the internal sound card was input as being the grid reference sequence 

which, of course, means that the ENF sequence computed from the recording made from  
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the external sound card was considered to be the target sequence. As will be remembered, 

the algorithm attempts to make the target sequence, as perfectly as possible, overlay onto 

the reference ENF sequence.   

The results of the oscillator error correction algorithm processing are shown in Figures 5-

2 and 5-3. Figure 5-2 illustrates the frequency correction that was made during the first 

iteration. Note that the vertical frequency alignment looks correct. However, as will be 

noted, particularly when one examines the end elements of both ENF sequences, there is 

a noticeable timing misalignment that still needs correcting. The result of timing  

 

Figure  5-2 A plot of the two ENF sequences after frequency correction was performed by the Oscillator 

Error Correction/𝑑�̅�  Metric algorithm at the end of its first iteration 
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Figure  5-3 A plot of the two ENF sequences after the time correction has been applied by the Oscillator 

Error Correction/𝑑�̅�  Metric algorithm at the end of its first iteration 

correction that was made to the target sequence during the first iteration is shown in 

Figure 5-3. As will be noted in this figure the alignment between the two ENF sequences 

appears to be very good. The oscillator error correction algorithm took a total of three 

iterations to reach convergence with most of the corrections to both target frequencies 

and target times being made during the first iteration.   

Admittedly, this one processing example does not conclusively prove that the Oscillator 

Error Correction/d_σ ̅  Metric algorithm is robust since it is an iterative algorithm and one 

must be concerned about its convergence properties. However, it should be noted that this 

algorithm is used extensively in the study to be reported in the next section. This use 

involved the comparisons of several million target and grid reference sequences. On these 
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comparisons the algorithm always converged. This should help allay any concerns about 

this algorithm convergence on real problems.  

5.3 Phenomenology of Electric Network Frequency 

5.3.1 Overview 

The phenomenology by which sinusoidal grid voltage signals find their way onto 

recordings made using battery powered digital recorders is not well understood. A better 

understanding of this phenomenology might prove useful in creating yet other ways to 

forensically verify the authenticity of digital recordings. Consequently, a study was 

conducted that used varying strengths of electric fields, varying strengths of magnetic 

fields, and sound shielding to determine which had effects on the strength or signal-to-

noise ratio (SNR) of the grid sinusoidal voltage signal that appear in recordings. Varying 

the sound level involved using sound silencing material to build a "soundproof" 

enclosure. Tests were conducted outside the sound enclosure and then inside the 

enclosures. Varying the electric field involved changing the charge across two parallel 

electrical plates. Varying the magnetic field involved changing the current that flows 

through a coil. Measuring instruments were used to gauge the intensity of the electric 

field and the magnetic field. A number of different battery powered recording devices 

were used in this study. To assure that the signal being observed was actually a grid 

sinusoidal voltage signal, frequencies were estimated from the recording, and the 

frequencies were compared with Frequency Disturbance Recorder (FDR) data. 

Interestingly, these studies suggest that the primary source for ENF in recordings appears 
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to be an audible hum that seemingly comes from grid powered devices. 

5.3.2 Methods 

One continuing problem in the science of ENF analysis is that how sinusoidal grid signals 

find their way onto digital recordings is not well understood. Currently, there are very 

few experiments and papers on studying the source of ENF signals existing in digital 

recordings. In addition, it is unclear whether or not there are detectable ENF traces in 

battery-powered digital audio recordings. This study investigates the source of the ENF 

in battery-powered digital recordings, and reveals that the ENF in these recordings may 

not be caused by low-frequency electromagnetic field induction, but rather by low-

frequency audible hum. A number of experiments were performed to explore the possible 

sources of ENF in battery-powered digital recordings. In these experiments, the electric 

and magnetic field strengths in different locations were measured, and the results of 

corresponding ENF extraction were analyzed. Understanding this underlying 

phenomenon is critical in verifying the validity of ENF-based techniques. 

Recent papers [66, 70-71] on the ENF Criterion all mention that the ENF exists not only 

in digital recordings produced by devices powered by the grid, but also in recordings 

made using battery-powered devices located in proximity to other mains-powered 

equipment or transmission cables. However, while it is straightforward to understand 

how ENF exists in recordings made by mains-powered recorders, very little research has 

been done to study how ENF signals couple into battery-powered recordings. Brixen [72] 

performed several experiments using five different recording devices under different 
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strengths of magnetic field trying to quantify the effect of magnetic field on ENF. His 

conclusion was that four out of the five recorders with electret microphones did not 

capture ENF in the recordings. Only one recorder with a dynamic microphone captured 

the ENF, however this was not dependent on the magnetic field strength. He also found 

out that under certain situations, the recordings will contain strong harmonics of the 

power grid frequency [72]. This leads to the question, is the magnetic field the dominant 

factor in embedding ENF in recordings? 

In the experiments studying the ENF source for battery-powered recordings, the 

procedure of confirming whether a recording has ENF or not is as follows:  

1) Digital recordings are made in a non-laboratory environment, i.e., one without 

measures in place to attenuate electromagnetic radiation or sound waves.  

2) The frequency spectrum of recordings is analyzed using an FFT (a 10-second 

moving window is used, then the results are summed and averaged). If a strong 60 

Hz peak or a peak at a harmonic of this frequency exists, then the recordings may 

have ENF. 

3) Extract the suspicious 60 Hz or its harmonic components using a short-time 

Fourier Transform (STFT) and compare the result with reference measurement 

data to confirm. 

The experiments were carried out as follows. First, a battery-powered iPhone 4 was used 

to make audio recordings, which were then examined for the presence of ENF. Since 

ENF was observed in those recordings, the possible sources for the ENF coupling 
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mechanism were needed to be explored. Previously, it was thought that low-frequency 

electromagnetic field induction was the most dominant factor in such coupling. In order 

to study the effect of the magnetic field on ENF in recordings, an experiment was 

designed using an AC voltage source (Agilent 6811B), an external resistor and a coil of 

wire. The coil that carries an AC current can generate a magnetic field whose frequency 

is the same as the AC voltage. Then the strength of the magnetic field was measured by a 

Gauss Meter (range 1 nT - 1999 nT), while the electric field was held constant (about 1 

V/m) during the experiment. Recordings were then made near the coil. By varying the 

frequency of the AC voltage, the effect of the frequency components on the ENF 

coupling could be examined. 

In addition, the effect of the electric field on ENF in digital recordings was analyzed. In 

these experiments, a parallel-plate device that was powered by a DC voltage source was 

used to generate specific electric fields. The strength of the electric field can also be 

measured by the meter and audio recordings were made in the middle of the parallel 

plates. By varying the voltage amplitude, the effect of the electric field could be 

examined. 

Through analysis of frequency spectrums of a number of recordings shows that the 120 

Hz component is the strongest, while 60 Hz and 180 Hz components are very weak which 

are usually buried with other frequency components in the frequency spectrum. However, 

in the power grid it is well known that the 60 Hz component is the strongest, and the third 

harmonic (180 Hz) is larger than the usually very small second harmonic (120 Hz). Thus, 
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it is highly possible that the 120 Hz harmonic in recordings is the audible hum, which is 

typically generated from the mechanical vibration of the transformer core from the 

electromagnetic force produced by the current in transformer windings. The frequency of 

such audio hum is twice that of the 60 Hz fundamental frequency; here in the U.S. it is 

120 Hz. 

The focus is then turned to study the effect of audible hum on ENF coupling into battery-

powered recordings. Three recording devices (OLYMPUS WS-600S, OLYMPUS WS-

300M, and an iPhone 4) were used in the following experiments. A number of recordings 

were made indoors and outdoors where audible hum was accessible while the magnetic 

field strength was low to find out whether ENF exists. In addition, several recordings 

were made in an apartment when the air conditioner fan was on or off to show the effect 

of audible hum from the fan. 

In order to confirm the ENF is caused by audible hum, a soundproofing material was 

used to reduce the transmission of sound. The rubber-based material is often used for 

soundproofing multi-family residences, studios, and theatres. For the experiments, the 

soundproof cylinder was made of the 3.2-mm thick material. The cylinder has four layers 

with length of two feet and diameter of four inches as shown in Figure 5-4. The sound 

intensity was controlled by having a recorder either outside of the cylinder or in the 

cylinder. By putting the recorder inside of the cylinder while the cell phone was outside 

of the cylinder the ENF components in both recordings could be compared. 
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During the experiments, although there were sometimes strong 120 Hz components in the 

recordings, they were not actual ENF as compared with the reference data. After 

analyzing the experiments, it was found that the digital recorder and the soundproof 

cylinder were placed on the same table near a computer. Since the computer was always 

vibrating and producing a noise, further analysis was needed. 

In order to figure out whether the 120 Hz component was from the vibration of the 

computer or not, the digital recorder was put on the table near the computer and two 

recordings were made. The computer was running during one recording and turned off 

during the other. The amplitude of the 120 Hz component from these two recordings was 

then compared. 

 

Figure  5-4 Cylinder made of the soundproofing material for the experiments 
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5.3.3 Results 

An iPhone 4 was used as recording device. During the ENF extraction work, the 

harmonics (i.e. 120 Hz, 180 Hz, 240 Hz, etc.) of 60 Hz (electric network frequency) were 

observed to exist in the audio recordings of battery-powered cell phones, which were 

made in an environment of very low electric and magnetic field strengths (as shown in 

Figure 5-5). The 120 Hz component was extracted from a typical audio recording (the 

extracted frequency was then divided by two) and compared with extraction of the 60 Hz 

voltage signal collected directly from electrical outlets and FDR measurements for the 

same time period (as shown in Figure 5-6). From the figure it can be seen that the three 

match well. Similar matching levels for 240 Hz and 360 Hz components were also 

confirmed. Since the iPhone 4 was used as the recording device, and the frequency  

 

Figure  5-5 Frequency spectrum of an audio recording made by an iPhone 4 

0 100 200 300 400 500
0

1

2

3
x 10

-4 Frequency Spectrum of Audio Signal (0-500 Hz)

Frequency (Hz)

A
m

p
li
tu

d
e



 

 82 

 

Figure  5-6 A comparison of ENF extracted from audio recording and voltage signal versus ENF measured 

by a Frequency Disturbance Recorder (FDR) 

response of the built-in microphone is in the range of 100 Hz-20 kHz, only power grid 

harmonics higher than 100 Hz could be captured.  

The test setup for the study of magnetic and electric fields is shown in Figure 5-7. The 

results show that the generated magnetic fields (such as 125 Hz, 150 Hz, 200 Hz) did not 

leave any trace in the audio recordings though the magnetic field was considered very 

strong (more than 1900 nT). Considering that ENF can be detected in audio recordings 

made in environment whose magnetic field is very weak (as low as 1 nT),  the test shows 

that the magnetic field may not be a dominant source of ENF in recordings. During 

experiments for the study of electric fields, various voltage amplitudes (from 1 V/m to 50  
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Figure  5-7 Test setup for effect of electric and magnetic fields on ENF coupling into battery-powered 

digital recordings 

V/m) were chosen and corresponding recordings were made. The tests reveal that the 

electric field also has no influence on the existence of ENF in audio recordings. 

The electrical hum is difficult to escape indoors because most buildings contain many 

electrical devices with transformers and/or motors. The frequency spectrum of indoor 

recordings is shown in Figure 5-8 and the extracted frequency with reference data is 

shown in Figure 5-9. In addition, the extracted ENF from outdoor recordings where 

audible hum is accessible with measurement data is shown in Figure 5-10. Analysis of a 

number of these indoor/outdoor recordings revealed that most of them captured actual 

ENF. 
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(a) Frequency spectrum of a recording made by OLYMPUS WS-600S 

 

 (b) Frequency spectrum of a recording made by OLYMPUS WS-300M 

 

(c) Frequency spectrum of a recording made by iPhone 4 

Figure  5-8 Frequency spectrum of recordings made by different recorders 
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Figure  5-9 A comparison of ENF from different indoor recordings versus ENF measured by a Frequency 

Disturbance Recorder (FDR) 

 

Figure  5-10 A comparison of ENF from different outdoor recordings versus ENF measured by a Frequency 

Disturbance Recorder (FDR) 
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For the experiments made in the apartment when the air conditioner fan was on or off, the 

Gauss Meter was used to make sure that the electric and magnetic fields didn’t change 

during the experiments. When the fan was off, there were almost no ENF traces in 

recordings, as shown in Figure 5-11; when the fan was on, a strong 120 Hz component 

and its harmonics existed, which are shown in Figure 5-12. Figure 5-13 shows the 

comparison between extracted ENF from recordings and reference data from FDR 

measurements. From the figure, it can be seen that the two match well, which indicates 

the audible hum generated by the fan leaves ENF in the recordings. Note that after a 

while, there is a small drift between the two in Figure 5-13. This is probably due to the 

oscillation error of the recording device; the overall shape is still very close to the FDR 

measurements.  

The attenuation effectiveness of the soundproofing material is shown in Table 5-1. Since 

the sensitivity of the two recorders is not the same, the results need to be calibrated by 

multiplying by a scalar, which can be calculated through recording under the same  

 

Figure  5-11 Recording made when the fan is off 
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Figure  5-12 Recording made when the fan is on. 

 

Figure  5-13 A comparison of ENF from audio recordings when fan is on versus ENF measured by a 

Frequency Disturbance Recorder (FDR) 
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conditions. The results of ENF in recordings made inside/outside the soundproofing 

material are shown in Figure 5-14. It shows that the 120 Hz component decreased 

significantly when the recorder was inside the cylinder and it confirms that the 120 Hz 

component is mainly audible hum. 

During the experiments, it was observed that occasionally, strong 120 Hz components 

existed in the recordings that were not from the power grid. Figure 5-15 shows a 

comparison between the extracted 120 Hz component (which was divided by 2) and the 

corresponding FDR measurements. From the figure, it is obvious that this 120 Hz 

component is not an actual ENF signal.  

In order to find the source of these 120 Hz components, two separate recordings were 

made when the computer was turned on and off. Each of the recordings was three 

minutes long. The FFT analysis results of the two are shown in Figure 5-16 and 5-17. 

In Figure 5-16，there is a strong 120 Hz component when the computer was turned on. 

However, the 120 Hz component is much smaller and merged with other noises in Figure 

5-17 when the computer was turned off. Therefore, the 120Hz component is mainly from 

the vibration of the computer, as its hard drive rotates at 7200 RPM which equates to 120 

Hz. Attention needs to be paid to this phenomenon because an apparent 60 Hz signal and 

its harmonics are not necessarily due to the power grid frequency, but instead result from 

other sources. 
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Figure  5-14 A comparison of amplitude of the 120 Hz component from audio recordings made 

inside/outside soundproof materials 

 

Figure  5-15 A comparison of ENF from a recording made near a computer versus ENF measured by a 

Frequency Disturbance Recorder (FDR) 
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Figure  5-16 An FFT analysis of a recording made with computer on 
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Figure  5-17 An FFT analysis of a recording made with computer off 
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5.4 Tampering Detection in Digital Recordings 

5.4.1 Overview 

Since this is a rather new area of research with few papers on the topic, a good starting 

point for this study seemed to be to determine which parameters to use, i.e., parameters 

that vary when insertions or deletions occur. The results of this study seemingly indicated 

that both frequency and phase angle usually change values at deletion points and at the 

start and stop points of an insertion. This then led to the creation of an improved 

algorithm for doing this type of analysis. This Discrete Fourier Transform (DFT) based 

algorithm uses both frequency and phase angle to determine whether tampering has 

occurred in a recording. It is believed that the use of both frequency magnitude and phase 

angle increases the "detectability" of both insertions and deletions.  

The tampering detection algorithm created has a frequency and phase angle extraction 

step and a target sequence/grid subsequence comparison step. However, since both 

frequency and phase angle information are used, the grid reference database must contain 

not only frequency data but phase angle data as well. This means that the comparison 

methods used to compare target data to grid subsequence data must involve both 

frequency and phase angle. This resulting algorithm underwent rather extensive testing 

that included different lengths of insertions and deletions and with variations in both the 

frequency and phase angle as the insertion and deletion points. It is hoped that this work, 

over time, will lead to a greater theoretical understanding of the tampering detection 

problem. It certainly proved that both frequency and phase angle must be included in any 
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detectability study. 

5.4.2 Methods 

An important task for forensic authentication is to determine whether someone has 

tampered with a recording, i.e., inserted sections into the recording or removed sections 

that were in the original recording. Previous work on tampering detection has involved 

looking for discontinuities in either the frequency or phase angle [62] that has been 

extracted from the digital recordings. However, using only frequency or phase angle to 

detect tampering may not be sufficient. As for using only frequency, frequency resolution 

depends on the extraction algorithm being used and its input parameters.  

As for looking for discontinuities in the phase angle, it is well known that there are 

occasional, sudden phase shifts that occur in the grid’s sinusoidal voltage signal.  These 

shifts are caused by a variety of different disturbances, such as generation trip and 

transmission line trip. Such phase angle shifts are very similar to those created by either 

insertions or deletions. In order to distinguish between a sudden shift caused by a 

disturbance from a shift that is caused by tampering, a grid phase angle reference 

database is needed. Having this phase angle reference database should eliminate the 

many false detections. Consequently, the idea behind the new algorithm is to extract 

phase from audio recordings using DFT-based methods and attempt to match this phase 

data against a reference phase sequence. The starting time for this reference phase 

sequence is given by matching the target frequency sequence to a frequency subsequence 

of the grid reference database.  
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Figure 5-18 shows a plot of the phase that has been extracted from a recording and the 

phase of the grid as measured by a Frequency Disturbance Recorder (FDR). This plot 

clearly shows how well phase angles extracted from a recording match the phase angles 

in the phase reference sequence. The quality of the match seems very good, although a 

small drift is observed. Thus in the new algorithm, both frequency and phase angle data 

estimates are made from the recording and the result is compared to a grid frequency and 

phase angle reference database. It is believed that this provides a more reliable detection.       

 

Figure  5-18 A comparison of phase angle estimated from a recording versus the phase angle of the grid as 

measured by a Frequency Disturbance Recorder (FDR) 

As for the possible ways that the ENF can be extracted from recordings, there are 

currently three general methods: 1) time/frequency domain analysis using spectrograms, 

2) frequency domain analysis based on selecting the maximal magnitude of a series of 

power spectra calculated from consecutive time segments of data, and 3) time-domain 
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analysis based on zero-crossing measurements of a band-pass filtered signal [66]. A brief 

comparison of these three methods can be found in [59].  

The method used in the new algorithm is a short-time Fourier transform (STFT)-based 

approach. A short-time Fourier transform (STFT) is a windowed Fourier transform where 

a signal is truncated by windowing function. This windowing function is moved through 

the signal in a manner that is specified by the hop size.  Given a signal x(n), n = 1, 2, …, 

N, the STFT is calculated by an M-point discrete Fourier transform (DFT) [29] 

 STFT𝑥(𝑚, 𝑘) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚𝑃)𝑒−
𝑗2𝜋

𝑀𝑛𝑘𝑀
𝑛=1          (5-11) 

where m = 1, 2, … , (N-M)/P, k = 1, 2, …, M, w is the  window function and P  is the size 

in each step, the so-called hop size.  

Since the grid sinusoidal voltage signal always occurs within a certain frequency range, 

to reduce the computation burden, k in  Equation (5-11) is constrained to some limited 

number of frequency bins according to a pre-set frequency range of interest, for example 

[f1, f2]. Only the frequency spectrum corresponding to [f1, f2] is calculated. This adjusted 

STFT is now presented as 

                                  STFT𝑥(𝑚, 𝑘) = ∑ 𝑥(𝑛)𝑤(𝑛 − 𝑚𝑃)𝑒−
𝑗2𝜋

𝑀𝑛𝑘𝑀
𝑛=1   

𝑘 ∈ [𝐾1  𝐾2]            (5-12) 

𝐾𝑖 = 𝑓𝑖
𝑀

𝑓𝑠
, 𝑖 = 1, 2.                      (5-13) 
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where fs is the sampling frequency. 

When both time and frequency are discretized, (5-11) becomes a standard Discrete 

Fourier Transform (DFT). Window size and hop size are two important parameters that 

determine the length and shift of the selected window function.  

Given a digital audio recording, the proposed new tampering detection procedure 

operates as follows:  

1)  Signal pre-processing: This step includes low-pass filtering, followed by signal 

decimation or downsampling. Then, a band pass filter is employed to select the 

frequency components that lie in the frequency range [f1, f2] from the decimated 

signal. 

2)  Signal segmentation: Break down the band pass-filtered signal into a series of 

overlapping frames according to the length and hop size of the moving window. 

3) Two-step frequency and phase estimation: A coarse frequency estimation is 

obtained using the STFT. Then a polynomial interpolation procedure is applied. 

This procedure increases the frequency and phase resolution of the frequency and 

phase estimates. The procedure is then repeated for each frame until all the 

windows have been processed. 

4)  Frequency reference database matching: After the ENF sequence is extracted 

from the audio file, it is matched against the FNET/GridEye frequency database. 

Mean square error (MSE) is used to compare the ENF sequence to sub-sequences 
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of the grid reference frequency database [60]. The MSE is computed using 

ε = log (
1

𝑀
∑ (𝐸𝑁𝐹(𝑖) − 𝑟𝑒𝑓(𝑖))2𝑀

𝑖=1 )        (5-14) 

where M is the length of the extracted ENF and ref stands for the reference 

frequency sequence. These distances are stored, and the subsequence of the grid 

reference frequency database that produces the smallest distance value is 

considered to be the "matching" sequence.   

After matching, both frequency and phase angle are compared with the corresponding 

frequency and phase reference databases to determine whether any tampering has 

occurred in the recording.  

Generally, the result in the frequency domain of an N-point DFT of a sinusoidal signal 

x(n) is a series of discrete points X(k) [74], k = 0, … , N-1. 

   𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋

𝑁
𝑛𝑘𝑁−1

𝑛=0         

 =
𝐴

2
𝑒𝑗𝜃𝑒𝑗

𝜋(𝑁−1)

𝑁
(𝑙−𝑘) 𝑠𝑖𝑛 𝜋(𝑙−𝑘)

𝑠𝑖𝑛 𝜋(𝑙−𝑘)/𝑁
      

             +
𝐴

2
𝑒−𝑗𝜃𝑒−𝑗

𝜋(𝑁−1)

𝑁
(𝑙+𝑘) 𝑠𝑖𝑛 𝜋(𝑙+𝑘)

𝑠𝑖𝑛 𝜋(𝑙+𝑘)/𝑁
                    (5-15) 

where A denotes the amplitude, θ is the initial phase, and 𝑓𝑠 is the sampling frequency.  

The real frequency of the signal corresponds to 𝑙𝑓𝑠 𝑁⁄ . In (5-15), the first term represents 

the positive frequency component, while the second term is the negative frequency 

component. The frequency spectrum can be obtained using the STFT and kpeak can be 
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found by locating the largest magnitude sample. Then a fractional term δ (|δ| ≤ 0.5) is 

calculated based on three DFT samples around the peak to refine kpeak [74]. The real 

frequency corresponds to l= kpeak +δ and in the frequency domain it is always between the 

largest two bins. Replacing (5-15) with kpeak and letting α = π(N-1)/N, the three bins 

around the peak value are obtained 

                                        𝑋(𝑘𝑝𝑒𝑎𝑘 − 1) =
𝐴

2
𝑒𝑗𝜃𝑒𝑗𝛼(𝛿+1) 𝑠𝑖𝑛 𝜋(𝛿+1)

𝑠𝑖𝑛 𝜋(𝛿+1)/𝑁
     

+
𝐴

2
𝑒−𝑗𝜃𝑒−𝑗𝛼(2𝑘𝑝𝑒𝑎𝑘+𝛿−1) 𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿−1)

𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿−1)/𝑁
      

                                            𝑋(𝑘𝑝𝑒𝑎𝑘) =
𝐴

2
𝑒𝑗𝜃𝑒𝑗𝛼𝛿 𝑠𝑖𝑛 𝜋𝛿

𝑠𝑖𝑛 𝜋𝛿/𝑁
     

                                    +
𝐴

2
𝑒−𝑗𝜃𝑒−𝑗𝛼(2𝑘𝑝𝑒𝑎𝑘+𝛿) 𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿)

𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿)/𝑁
     (5-16) 

                                          𝑋(𝑘𝑝𝑒𝑎𝑘 + 1) =
𝐴

2
𝑒𝑗𝜃𝑒𝑗𝛼(𝛿−1) 𝑠𝑖𝑛 𝜋(𝛿−1)

𝑠𝑖𝑛 𝜋(𝛿−1)/𝑁
     

                                                                     +
𝐴

2
𝑒−𝑗𝜃𝑒−𝑗𝛼(2𝑘𝑝𝑒𝑎𝑘+𝛿+1) 𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿+1)

𝑠𝑖𝑛 𝜋(2𝑘𝑝𝑒𝑎𝑘+𝛿+1)/𝑁
   .  

Since the amplitude of the positive frequency component is usually much larger than that 

of the negative frequency component [74], the negative frequency component can be 

neglected. Then the amplitude and phase angle of the signal can be estimated according 

to the expression of X(kpeak) [73]. 

  𝐴 =
2𝜋𝛿

𝑁𝑠𝑖𝑛(𝜋𝛿)
|𝑋(𝑘𝑝𝑒𝑎𝑘)| 

𝜃 = 𝑎𝑛𝑔𝑙𝑒 (𝑋(𝑘𝑝𝑒𝑎𝑘)) − 𝛼𝛿                        (6-17) 
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                                                           𝛿 = Re [
𝑋(𝑘𝑝𝑒𝑎𝑘−1 )−𝑋(𝑘𝑝𝑒𝑎𝑘+1 )

2𝑋(𝑘𝑝𝑒𝑎𝑘)−𝑋(𝑘𝑝𝑒𝑎𝑘−1 )−𝑋(𝑘𝑝𝑒𝑎𝑘+1 )
]  

The coarse frequency is then refined by 

𝑓 =
𝑘𝑝𝑒𝑎𝑘+𝛿

𝑁
𝑓𝑠 .                                              (6-18) 

5.4.3 Results 

The effectiveness of detecting tampering may be different for frequency and phase angle 

for different extraction methods and parameter settings. Take the STFT method as an 

example. If different window sizes (hop size = 0.1s, deletion length = 30s) are chosen, the 

results are different. From Figure 5-19 it can be seen that the frequency change is less 

obvious as window size increases (sometimes a longer window time is needed to achieve 

acceptable results). Figure 5-20 shows the corresponding phase change. Since in different 

locations, the initial phase is different, the reference phase should be vertically shifted to 

match the starting phase if an exact match is needed. From Figure 5-20, unlike the 

frequency change, the phase change is more obvious as window size increases. Hence, 

besides using frequency, it is better to utilize the phase angle to detect tampering as well. 

Figure 5-21 is the phase angle recorded by one FDR located in Florida when a line trip 

occurred nearby on 2/26/2008. From the figure, it can be seen that the sudden small phase 

change caused by disturbances is very similar to that due to tampering of recordings. In 

these cases, only looking for discontinuity of the phase angle without a phase reference  
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Figure  5-19 Frequency change when 30s data of original recording is deleted with different window sizes 

 

Figure  5-20 Phase change when 30s data of original recording is deleted with different window sizes 
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Figure  5-21 Sudden phase angle change due to a disturbance in the power grid 

database is highly likely to cause a false detection. Thus, establishing a phase reference 

database is very helpful for tampering detection. 

In this work, two typical types of tampering, deletion and replacement, are considered. 

The following audio recordings were collected using either an internal or external 

soundcard. The recordings were then saved as PCM WAV files. A thin band pass filter 

was designed and the Blackman Window was applied to each frame of the recording. 

Length of the window is determined by the parameter window size. The original 

sampling rate is 44,100 Hz and the downsampling rate is 35. Data analysis was 

performed in MATLAB. 

Tampering detection using frequency is illustrated as follows. If a target sequence can 

match against frequency reference database correctly using MSE or correlation 

coefficient method [67], tampering can usually be easily detected by comparing the ENF 

with the reference frequency sequence. If there is a deletion in the recording, one spike 
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corresponding to the deletion point in the ENF could be detected, as shown in Figure 5-

22; if it is a replacement, there are two spikes which correspond to the beginning and 

ending point of the replacement in the ENF, as shown in Figure 5-23.  

In practice, people may ask if the recording is tampered, i.e., there are frequency spikes in 

the extracted ENF, matching methods based on MSE or correlation coefficient may fail. 

How should the frequency matching be performed in these cases? It is suggested that 

once a frequency spike has been observed, an extracted ENF section that has no 

frequency spikes should be used to do the matching, assuming the recording is long 

enough. 

A number of recordings have been analyzed to detect tampering using both frequency 

and phase, which result in more reliable detection. As an example, here are two cases of 

tampering detection with different lengths of deletion and replacement employing both 

frequency and phase. 

A. Case 1- Deletion 

A portion of the recording is deleted, then its frequency and phase are extracted as 

illustrated in previous Section. 

Figure 5-24 shows the frequency change with different lengths of deletion, and Figure 5-

25 shows the corresponding phase change. Besides detecting tampering using the phase, 

with a phase reference database, it is easy to roughly estimate the length of deletion. 



 

 102 

 

Figure  5-22 Frequency change when 30s data of original recording is deleted 

 

Figure  5-23 Frequency change when 30s data of original recording is replaced 
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Figure  5-24 Frequency change with different deletion lengths of the original recording 

 

Figure  5-25 Phase change with different deletion lengths of the original recording 
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As shown in Figure 5-26, a point (52.7 s) right after the abrupt phase change and the 

point (102.1 s) in reference phase (here "No tampering" phase is used) which has the 

same phase value are chosen. Considering the phase value of the tampered recording and 

the reference should be the same after the tampering part, the deletion length can be 

estimated by measuring the time difference between those two points. It is also possible 

to estimate the deletion length using frequency with a similar procedure, but it is much 

less straightforward. 

 

Figure  5-26 Deletion length estimation using phase angle with the reference data 

B. Case 2 - Replacement 

A section of the recording is replaced with another section of data. Figure 5-27 is the 

frequency change with different replacement lengths and Figure 5-28 shows the phase 
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Figure  5-27 Frequency change with different lengths of replacement of the original recording 

 

Figure  5-28 Phase change with different replacement lengths of the original recording 
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two frequency and phase spikes can be observed in the tampered cases. Furthermore, it is 

straightforward to estimate the length of replacement using either frequency or phase 

through measuring the time difference between the two spikes. 

5.5 Frequency Localization Using FDR Data 

5.5.1 Overview 

The capability of previous research to determine the recording location is limited to the 

size of one interconnected grid. It is desirable to have a better spatial resolution. With the 

widely deployed FNET/GridEye system (over 200 units in U.S.), it provides a great 

opportunity to look into this topic. The FDR deployment map in the North America is 

shown in Figure 1-1. 

Variations among ENF signals within the same grid are due to the local load 

characteristics. These background noises at different places are recorded by the local 

frequency measurement devices such as FDRs. Thus by using the noise characteristics, 

the location of a target frequency signal can be identified by comparing it with historical 

data from different places. Wide area power grid frequency measurement system, such as 

FNET/GridEye, can provide the historical data with high geography density and long 

time period, which can be used as a complete dictionary to identify the location of target 

frequency. 
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Three levels of spatial resolution, i.e., different states in one interconnection, different 

cities in one state, and multiple places in one city, are utilized to study the possibility of 

frequency localization. 

5.5.2 Methods 

To determine the location of the target signal, it basically needs two steps: 1) extracting 

the characteristics of the noise from target frequency as shown in Figure 5-29, and 2) 

compare the extracted characteristics with historical data from different places as shown 

in Figure 5-30. Therefore, a method needs to be developed to extract the characteristics of 

noises while filtering out the common part. In addition, a pattern recognition method 

needs to be used to identify the location of the target signal. 

Here frequency domain analysis is employed to get the characteristics of signals. Due to 

the location dependent feature, the background noise shows different statistical 

characteristics in the frequency domain. To extract these characteristics, the "noise" is 

obtained by removing the common part, and then DFT is performed. 

Neural network, as a novel and intelligent data analysis tool, can be used for pattern 

recognition. The frequency spectrum from historical data will be used to train the neural 

network, and the frequency spectrum of the target signal will be input into the trained 

network to identify its location. 
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Figure  5-29 Approach of characteristics extraction 

 

Figure  5-30 Approach of pattern recognition based on neural network 
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5.5.3 Results 

In the current study, the FDR data are used and three levels of spatial resolution are 

studied. 

As the first step, the location identification ability of signals from different states is 

tested. Five cities of different states are selected in Eastern Interconnection (EI) and 

shown in Figure 5-31. Frequency data recorded there are used as the historical data to 

train the neural network. A target signal from one of them measured at a different time is 

used to test if the developed technology can match it to the correct location of the five 

cities. 5-hour historical data are used to train the neural network. The target data length is 

1 minute. Many samples of target data are tested to obtain the average matching ratio. 

Then, the localization area is reduced to a state (five cities of Missouri are selected) and 

same procedure is applied to obtain the results. Finally, five locations in the same city 

(Knoxville, TN) are tested. 

For each of the three situations, different time intervals between target data and training 

data are considered, from 1 day to 2 years. This tested the effectiveness of the technology 

in different time scales. The results are listed in Table 5-2. 

It can be seen from the table that for different states scenario, the location of the target 

signal can be identified with a high matching ratio even if the time interval between the 

target and historical data is up to 2 years. However, the matching ratio decreases as the 

time interval increases. Thus recent data are preferred for the frequency localization study 
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Figure  5-31 Location map of five states in EI 

 

Table 5-2 Matching ratios for frequency localization study 

Area Time Interval Matching Ratio 

Different states 

1 month 99.3% 

1 year 80.0% 

2 years 72.2% 

Different cities in the same state 

1 month 94.9% 

1 year 24.7% 

Different locations in a city 1 day 39.3% 
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when they are available. Regarding different cities in the same state, the matching ratio of 

1 month is lower, and the matching ratio of 1 year is too low to be useful. For the area as 

small as a city, the matching ratio even in one day is very low. 

The reason is that in the same city, the background noise propagates to every outlet 

without too much attenuation. As a result, the frequency measurements show a very small 

difference between each other. That is, the "noise" extracted from the frequency is 

smaller than the resolution of frequency measurement devices which is 0.1 mHz [75]. 

Therefore, the characteristics of different locations are submerged by the measurement 

uncertainty and thus cannot be distinguished. To identify the location within a city, 

higher measurement accuracy is required [76]. 

Though the location cannot be distinguished within a city, the results actually indicate 

that it is the local frequency characteristics of power grid rather than measurement unit 

difference that enable the distinguishability. Therefore, this technology is useful 

regardless of what measurement recording devices are used as long as they are accurate 

enough. 

5.6 Conclusions 

This chapter presents an innovative application of wide area power system measurement 

for digital authentication using FNET/GridEye system. Four research studies, i.e., 

oscillator error removal, ENF phenomenology, tampering detection using both frequency 
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and phase angle, and frequency localization, are performed. This provides a 

comprehensive guideline of using power system measurement for digital authentication. 

Future work includes using different lengths of frequency data and extracted ENF for the 

localization study, and utilizing the local characteristics of frequency for cyber security 

related study. 
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 Data Analytics Using Historical Chapter 6

FNET/GridEye Database 

The large amounts of data collected by FNET/GridEye provide unique opportunities for 

data analytics related studies. This chapter explores several preliminary studies using 

historical FNET/GridEye data. Further investigation may be performed by expanding the 

preliminary studies. 

6.1 EI Inertia Estimation and Analysis 

The frequency drops when the power supply of the system is less than the demand due to 

a loss of generation. This study uses historical data to estimate the system inertia constant 

of EI. The various parameters in the estimation method were examined and determined in 

order to have an accurate estimation. In addition, analysis and interpretation of the results 

will be performed to help with system operators to evaluate the system condition. 

The frequency of a power system changes when there is an imbalance between supply 

and demand. The frequency drops when the power supply of the system becomes 

insufficient due to a loss of major generation. If the amount of frequency drop is large, 

protection systems for low frequency may be activated in the power plants and the 

consequent shutdown of the plants may lead to the black-out of the power system. Thus it 

is extremely important to grasp the frequency response of the power system to the loss of 

generation. The rate of frequency change due to imbalance depends on the inertia of the 

system. System inertia is directly proportional to synchronously rotating mass in the 
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system which includes synchronous generation and motor load. Knowing the system 

inertia is very helpful for system operations.   

Estimation of system inertia is an important task for every power system [30, 77-78]. T. 

Inoue et al. [79] conducted research in this subject to estimate the inertia constant of 

Japanese system. A polynomial approximation with respect to time was fit to the 

waveform of the transients in estimating the inertia constant. D. P. Chassin et al. [80] 

developed computer models to compute the inertial constant of Western Electricity 

Coordination Council (WECC) system. S. Sharma et al. developed an on-line Inertial 

Frequency Response Estimation Tool for the ERCOT Interconnection [81]. 

This study focuses on analyzing the inertia of Eastern Interconnection (EI) using 

historical FNET/GridEye data. There are three major goals for this project: 

1. Develop a method to estimate the system inertia using historical measurement 

data correctly.  

2. Evaluate and improve the developed system inertia estimation method by refining 

the parameters. 

3. Investigate the effects of different factors, such as system load and seasonal 

variation, on the system inertia.  

6.1.1 System Inertia Estimation 

The general equation for calculating system inertia using rate of frequency change is 

illustrated below: 
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𝐻 =
∆𝑃

𝑑𝑓
𝑑𝑡⁄

×
𝑓0

2
     (6-1) 

where H is system inertia constant on system base (seconds), ΔP is power change (per 

unit in system load base), df/dt is rate of change of frequency (Hz/s) and f0 is frequency at 

the time of disturbance (Hz).  

Confirmed large generation trip events in Year 2011 are analyzed. The estimated system 

inertia constant of EI versus system beta value in four different seasons (spring, summer, 

fall, winter) is shown in Figure 6-1(a) and the estimated inertia constant versus maximum 

rate of frequency change is shown in Figure 6-1(b). The blue line in the figures is the 

corresponding linear regression of the model. It could be seen that the inertia has a 

positive linear relationship with beta value while has a negative linear relationship with 

the rate of change of frequency. 

NERC's frequency response standard is shown in Figure 6-1(c), where Point A is the 

frequency immediately before disturbance, Point B is the frequency at the point 

immediately after the frequency stabilizes due to governor action but before contingent 

control area takes action and Point C is the point of maximum frequency excursion due to 

the loss of rotating kinetic energy from the interconnection. The relationship between 

inertial frequency response and generation loss is high correlated as shown in Figure 6-

1(d). This relationship may be used to estimate the generation loss based on the 

frequency deviation. 
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           (a) System inertia vs. beta value                                (b) System inertia vs. maximum df/dt 

  

   (c) NERC defined A, C, and B points                       (d) Inertial frequency response vs. MW loss 

Figure 6-1 Inertia estimation results 
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6.1.2 Inertia Analysis Using SPSS 

A statistical software, SPSS, is used to perform the inertia analysis. Firstly, the 

correlation coefficient of the variables is examined, which is shown in Figure 6-2. 

A number of factors, such as event location, load amount at event time, and frequency 

change during the event, are considered.  In the analysis, "Beta" or "Inertia" is the 

dependent and other factors could be added as independents. Stepwise linear regression is 

chosen which adds only one variable at a time to the model as the model is "slowly" built. 

For Year 2011, the data also include interconnection load for each event. The final model 

for the Beta analysis excluding BA frequency difference and loss amount is shown in 

Figure 6-3 and Figure 6-4. It can be seen from the figures that the final model is built in 

five steps. The combined variables explain approximately 60% of the variance of inertia. 

Regarding the inertia, the final model is shown in Figure 6-5. It can be seen from the 

figure that the final model is built in three steps. The combined variables explain 

approximately 50% of the variance of inertia.  

6.2 FIDVR Detection in FNET/GridEye Historical Database 

A Delayed Voltage Recovery event, or more popularly today, a Fault Induced Delayed 

Voltage Recovery (FIDVR), is the phenomenon whereby system voltage remains at 

significantly reduced levels for several seconds after a transmission, sub-transmission, or 

distribution fault has been cleared [82]. FIDVR is caused by highly concentrated 
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Figure 6-2 Correlation coefficient of variables 



 

 119 

 

Figure 6-3 Variables entered/removed 

 

Figure 6-4 Model summary for Beta analysis 
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Figure 6-5 Model summary for inertia analysis 
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induction motor loads with constant torque that stall in response to low voltages 

associated with system faults and draw excessive reactive power from the grid. The study 

is to show if the phenomena is observable in FNET/GridEye database. Figure 6-6 shows 

a typical pattern for voltage data during a FIDVR event [82]. 

 

Figure 6-6 A typical FIDVR following a 230-kV transmission fault in Southern California 

According to the characteristics of the FIDVR event as shown in the figure, a trigger is 

designed to detect such phenomena in the large FNET/GridEye historical database. The 

flowchart is shown in Figure 6-7. Several important parameters for designing the trigger 

are the voltage drop and time duration of going back to pre-trigger value. These 

parameters can be varied for the trigger. By using the designed trigger, some preliminary 

results have been generated. For example, a number of "FIDVR like" cases were detected 

from summer 2011 FNET/GridEye data at various locations as shown in Figure 6-8. The 

overall shape is very similar to the typical FIDVR pattern, but the voltage drop in some 

of them is not severe. 
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Figure 6-7 Flowchart of trigger design 
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Figure 6-8 Sample results of detected FIDVR in FNET/GridEye database 

Future work includes a more complete analysis of the database, event occurrence 

mapping and trend analysis, correlation of FIDVR occurrence with recorded 

temperatures, and comparison with PMU data. 

6.3 Statistical Analysis of FNET/GridEye Oscillation Database 

The FNET/GridEye oscillation event database includes a great deal of useful information, 

such as frequency, damping ratio, maximum amplitude and time information [83]. 

Thanks to the wide deployment of FDRs, high-resolution geolocation information can 

also be found in the database.  

US FL 

US IL 

US IL US MS 

US OH US SC 
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Generally speaking, the causes of oscillation can be generation trip, load shedding, line 

trip and non-obvious event. The probability distributions of frequency, damping ratio and 

maximum amplitude in EI are analyzed here.  

The probability distributions of frequency, damping ratio and maximum amplitude for 

several years of data in EI are shown in Figure 6-9. It could be seen from Figure 6-9(a) 

that oscillation frequencies of most events are around 0.2 Hz, which is a typical inter-area 

oscillation frequency in EI. Figure 6-9(b) indicates that the damping ratios are mostly 

below 40%. Figure 6-9(c) shows that the maximum amplitudes are mostly below 20 

degrees. 

 

             (a)  Probability distribution of frequency                  (b) Probability distribution of damping ratio 

 

(c) Probability distribution of maximum amplitude 

Figure 6-9 Probability distribution of important factors 
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Next, generation trip-caused oscillation events with location are specifically investigated. 

Take year 2014 EI data as an example, the generation trip and oscillation information is 

shown in Figure 6-10. Generation trip data include time, location, and size of the trip. 

Oscillation data include time, oscillation level, maximum negative and positive 

magnitude, dominant frequency, and damping ratio. 

 

Figure 6-10 Generation trip and oscillation data 

Figure 6-11 shows the oscillation level distribution in EI. Red indicates oscillation level 

is between 0 and 1 (highest oscillation magnitude), blue indicates oscillation level is 

between 2 and 3 (lowest oscillation magnitude), and green indicates oscillation level is 

between 1 and 2.  

It can be seen from the figure that oscillation magnitudes are larger near the boundary 

and are not highly related with the generation trip amount.  

Future work includes validation of the observation in simulation. 
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Figure 6-11 Oscillation level distribution in EI 
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 Conclusions and Future Work Chapter 7

Driven by both technological and economic considerations, electric power grids have 

become more interconnected across regions, countries, and even continents. However, 

planning and control of interconnection-level power grids is a demanding task that must 

carefully deal with interconnected system dynamics. With the bottlenecks of traditional 

circuit-based simulation, better utilization and integration of more and more power 

system measurement is highly needed. This dissertation presents several applications 

using either PMU or FDR which contribute to the development of power system 

monitoring and dynamic modeling. 

For measurement-based system response prediction, the MAR model is developed for 

power system study of linear conditions with pure measurement. It can be easily updated 

online with typical events.  To improve its feasibility with a large number of 

measurement inputs, a model reduction technique with delayed correlation coefficient is 

utilized for input selections. Future work includes a comprehensive test of the approach 

in a real system. 

For measurement-based system reduction, the external system is reduced using the ARX 

model based on certain input/output data. This technique may increase the speed of 

power system dynamic simulation and improve the accuracy of equivalent systems. 
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Future work includes implementation of the approach in other more flexible tools and 

improvement of the ARX model for corresponding operating condition. 

For measurement-based generator dynamic model validation, a detailed analysis using 

both simulation data and PMU data is performed. By utilizing the simulation data, several 

important factors, such as the effect of PMU reporting rates, event selection, and masking 

effect are discussed. This technique only requires a simple procedure and could allow 

more frequent validation. 

For the application of using power system measurement for digital authentication, four 

research studies, i.e., oscillator error removal, ENF phenomenology, tampering detection 

using both frequency and phase angle, and frequency localization, are performed. It 

improves the understanding of the ENF criterion and provides a comprehensive 

guideline. With the discovered local characteristics of frequency, future work includes 

using it for power grid cyber security related research. 

Finally, for the data analytics studies using historical data, preliminary results including 

inertia estimation and analysis, FIDVR detection, and statistical analysis of oscillation 

database are presented. These show the great potential of data analytics research to better 

understand the grid. Future work includes more thorough investigation and corresponding 

validation in the simulation.  
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