1,973 research outputs found

    The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    Full text link
    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from within the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. In this paper, we present a catalog of 19 newly discovered gravitational lenses, along with 9 other observed candidate systems that are either possible lenses, non-lenses, or non-detections. The survey efficiency is thus >=68%. We also present Gemini and Magellan IFU data for 9 of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent main-sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys (abridged).Comment: ApJ, in press. 20 pages, numerous figures, uses emulateapj. Replaced to include full-resolution spectro figures. Version with full-resolution imaging figures available at http://www.cfa.harvard.edu/~abolton/slacs1_hires.pdf (PDF) or at http://www.cfa.harvard.edu/~abolton/slacs1_hires.ps.gz (PS). Additional SLACS survey info at http://www.slacs.or

    The long-period Galactic Cepheid RS Puppis - III. A geometric distance from HST polarimetric imaging of its light echoes

    Full text link
    As one of the most luminous Cepheids in the Milky Way, the 41.5-day RS Puppis is an analog of the long-period Cepheids used to measure extragalactic distances. An accurate distance to this star would therefore help anchor the zero-point of the bright end of the period-luminosity relation. But, at a distance of about 2 kpc, RS Pup is too far away for measuring a direct trigonometric parallax with a precision of a few percent with existing instrumentation. RS Pup is unique in being surrounded by a reflection nebula, whose brightness varies as pulses of light from the Cepheid propagate outwards. We present new polarimetric imaging of the nebula obtained with HST/ACS. The derived map of the degree of linear polarization pL allows us to reconstruct the three-dimensional structure of the dust distribution. To retrieve the scattering angle from the pL value, we consider two different polarization models, one based on a Milky Way dust mixture and one assuming Rayleigh scattering. Considering the derived dust distribution in the nebula, we adjust a model of the phase lag of the photometric variations over selected nebular features to retrieve the distance of RS Pup. We obtain a distance of 1910 +/- 80 pc (4.2%), corresponding to a parallax of 0.524 +/- 0.022 mas. The agreement between the two polarization models we considered is good, but the final uncertainty is dominated by systematics in the adopted model parameters. The distance we obtain is consistent with existing measurements from the literature, but light echoes provide a distance estimate that is not subject to the same systematic uncertainties as other estimators (e.g. the Baade-Wesselink technique). RS Pup therefore provides an important fiducial for the calibration of systematic uncertainties of the long-period Cepheid distance scale.Comment: 14 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    New Techniques for High-Contrast Imaging with ADI: the ACORNS-ADI SEEDS Data Reduction Pipeline

    Get PDF
    We describe Algorithms for Calibration, Optimized Registration, and Nulling the Star in Angular Differential Imaging (ACORNS-ADI), a new, parallelized software package to reduce high-contrast imaging data, and its application to data from the SEEDS survey. We implement several new algorithms, including a method to register saturated images, a trimmed mean for combining an image sequence that reduces noise by up to ~20%, and a robust and computationally fast method to compute the sensitivity of a high-contrast observation everywhere on the field-of-view without introducing artificial sources. We also include a description of image processing steps to remove electronic artifacts specific to Hawaii2-RG detectors like the one used for SEEDS, and a detailed analysis of the Locally Optimized Combination of Images (LOCI) algorithm commonly used to reduce high-contrast imaging data. ACORNS-ADI is written in python. It is efficient and open-source, and includes several optional features which may improve performance on data from other instruments. ACORNS-ADI requires minimal modification to reduce data from instruments other than HiCIAO. It is freely available for download at www.github.com/t-brandt/acorns-adi under a BSD license.Comment: 15 pages, 9 figures, accepted to ApJ. Replaced with accepted version; mostly minor changes. Software update

    Detection of a Westward Hotspot Offset in the Atmosphere of a Hot Gas Giant CoRoT-2b

    Get PDF
    Short-period planets exhibit day-night temperature contrasts of hundreds to thousands of degrees K. They also exhibit eastward hotspot offsets whereby the hottest region on the planet is east of the substellar point; this has been widely interpreted as advection of heat due to eastward winds. We present thermal phase observations of the hot Jupiter CoRoT-2b obtained with the IRAC instrument on the Spitzer Space Telescope. These measurements show the most robust detection to date of a westward hotspot offset of 23 ±\pm 4 degrees, in contrast with the nine other planets with equivalent measurements. The peculiar infrared flux map of CoRoT-2b may result from westward winds due to non-synchronous rotation magnetic effects, or partial cloud coverage, that obscures the emergent flux from the planet's eastern hemisphere. Non-synchronous rotation and magnetic effects may also explain the planet's anomalously large radius. On the other hand, partial cloud coverage could explain the featureless dayside emission spectrum of the planet. If CoRoT-2b is not tidally locked, then it means that our understanding of star-planet tidal interaction is incomplete. If the westward offset is due to magnetic effects, our result represents an opportunity to study an exoplanet's magnetic field. If it has Eastern clouds, then it means that our understanding of large-scale circulation on tidally locked planets is incomplete.Comment: 30 pages, 4 figures, 15 supplementary figure

    The nearby population of M dwarfs with WISE: A search for warm circumstellar dust

    Full text link
    Circumstellar debris disks are important because of their connection to planetary systems. An efficient way to identify these systems is through their infrared excess. Most studies so far concentrated on early-type or solar-type stars, but less effort has gone into investigating M dwarfs. We characterize the mid-infrared photometric behavior of M dwarfs and search for infrared excess in nearby M dwarfs taken from the volume-limited RECONS sample using data from the WISE satellite and the 2MASS catalog. Our sample consists of 85 sources encompassing 103 M dwarfs. We derive empirical infrared colors from these data and discuss their errors. Based on this, we check the stars for infrared excess and discuss the minimum excess we would be able to detect. Other than the M8.5 dwarf SCR 1845-6357 A, where the excess is produced by a known T6 companion, we detect no excesses in any of our sample stars. The limits we derive for the 22um excess are slightly higher than the usual detection limit of 10-15% for Spitzer studies, but including the [12]-[22] color in our analysis allows us to derive tight constraints on the fractional dust luminosity L_dust/L_star. We show that this result is consistent with M dwarf excesses in the mid-inrared being as frequent as excesses around earlier-type stars. The low detection rate could be an age effect. We also present a tentative excess detection at 22um around the known cold debris disk M dwarf AU Mic, which is not part of our statistical sample. There is still no clear detection of a mid-infrared excess around any old (>30 Myr) main-sequence M dwarf. It is unclear whether this is due to a different dust evolution around M dwarfs or whether this is an age effect combined with the diffculties involved in searching M dwarfs for infrared excesses. A significantly larger sample of well-studied M dwarfs is required to solve this question.Comment: Accepted for publication in A&A, 15 pages, 7 figure

    Trajectory Generation for Noise-Constrained Autonomous Flight Operations

    Get PDF
    One of the major factors in acceptance of aircraft operating in urban areas is noise. In this work, we build on a framework for trajectory generation in order to account for limits on acousticmetrics at one ormore observer locations. The spatial trajectories are generated using Bzier polynomials and satisfy dynamic, acoustic, and mission constraints. The trajectories also guarantee spatial or temporal separation between vehicles for multi-vehicle operations. A simulation example is provided that demonstrates the reduction in noise levels at a set of measurement locations

    Strong Nebular Line Ratios in the Spectra of z~2-3 Star-forming Galaxies: First Results from KBSS-MOSFIRE

    Get PDF
    We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0< z < 2.6, star-formation rates 2 < SFR < 200 M_sun/yr, and stellar masses 8.6 < log(M*/M_sun) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z~2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits a disjoint, yet similarly tight, relationship between the ratios [NII]6585/Halpha and [OIII]/Hbeta as compared to local galaxies. Using photoionization models, we argue that the offset of the z~2.3 locus relative to z~ 0 is explained by a combination of harder ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H than applies to most local galaxies, and that the position of a galaxy along the z~2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net ionizing radiation field resembles a blackbody with effective temperature T_eff = 50000-60000 K and N/O close to the solar value at all O/H. We critically assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities, and consider the implications of the small intrinsic scatter in the empirical relationship between excitation-sensitive line indices and stellar mass (i.e., the "mass-metallicity" relation), at z~2.3.Comment: 41 pages, 25 figures, accepted for publication in the Astrophysical Journal. Version with full-resolution figures available at http://www.astro.caltech.edu/~ccs/mos_bpt_submit.pd
    • …
    corecore