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One of the major factors in acceptance of aircraft operating in urban areas is noise. In

this work, we build on a framework for trajectory generation in order to account for limits on

acoustic metrics at one or more observer locations. The spatial trajectories are generated using

Bézier polynomials and satisfy dynamic, acoustic, and mission constraints. The trajectories

also guarantee spatial or temporal separation between vehicles for multi-vehicle operations.

A simulation example is provided that demonstrates the reduction in noise levels at a set of

measurement locations.

I. Nomenclature

x = Position in R3

V = Vehicle speed

at = Total acceleration

ap = Tangential acceleration

m = Vehicle mass

t = Time

t̂ = Normalized time

γ = Flight path angle

χ = Ground track

T = Net thrust of vehicle propellers

D = Aerodynamic drag force

σ = Parametric speed

ζ = Path parameter

θ = Timing law

KT = Thrust coefficient

KD = Drag coefficient

dp = Propeller diameter

ωp = Propeller angular speed

Np = Number of propellers

ωp = Rotor angular rotation rate

c = Speed of sound

r = Distance between acoustic source and observer

Mt = Rotor tip Mach number

OASPL = Overall Sound Pressure Level

A = Acoustic observer location

βA = Equivalent acoustic metric

bkn = k-th Bernstein basis function for a polynomial of degree n

II. Introduction

O
ne of the major barriers to public acceptance facing Urban Air Mobility (UAM) and the widespread use of

UAM-class vehicles in urban areas is noise management [1]. A variety of approaches to noise mitigation for

propeller/rotor driven UAM-class vehicles have been increasingly explored in recent years, including configuration
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design [2], trajectory design [3, 4], and directivity control through propeller phase synchronization [5]. Application

of hierarchical control to noise mitigation is an attractive option that can be applied to existing vehicles with no

modifications to the configuration. The first layer of hierarchical control is to design the vehicle’s spatial trajectory to

reduce the noise signature at sensitive areas. In practice, such a trajectory design should guarantee separation from any

other air traffic while accounting for the airspace, the dynamic limitations of the vehicle, and other relevant restrictions.

The second layer involves directivity through rotor phase synchronization. Initial closed loop control work in this area

is presented in Ref. [6]. It is anticipated that integrated dynamic trajectory and directivity control in a hierarchical

control architecture will provide a flexible tool for noise management of UAM-class vehicles in urban environment.

In this work the authors formulate an acoustic metric and a constraint function that are then used in a multi-

vehicle trajectory generation framework [7, 8]. In this framework, trajectories are generated that satisfy constraints on

dynamics, mission-specific constraints, and inter-vehicle separation constraints. The vehicle dynamics are differentially

flat, allowing the constraint functions to be written in terms of the spatial path and timing law governing the vehicle’s

progression along the path. The path and constraints are formulated as Bézier curves that provide numerical robustness

and efficient algorithms associated with the polynomial Bernstein basis [9]. Additionally, the polynomial representation

guarantees the satisfaction of all constraints by avoiding discretization of the trajectory and constraint functions. The

acoustic metric and constraint function are formulated in the form of a Bézier curve which allows incorporation of the

constraint into the trajectory generation framework. The acoustic metric can also be incorporated into the cost function

as a multi-objective optimization problem. This approach is evaluated in a simulation of a UAM-class representative

vehicle equipped with multiple propellers in a forward flight configuration [10]. Simulation results demonstrated the

acoustic benefits obtained from incorporating the acoustic model in the trajectory generation.

In the remainder of this document,Section III describes the vehicle dynamics along the trajectory and the formulation

of the trajectory in terms of Bézier curves. Section IV provides the acoustic model and formulates the acoustic constraint.

Simulation examples are shown in Section V, and concluding remarks are made in Section VI.

III. Vehicle Dynamics and Trajectory Definition

A. Vehicle Dynamics

The targeted application for this noise management approach is distributed-propulsion UAM-class vehicles that

exhibit complex nonlinear dynamics. However, for the purpose of trajectory generation, it is sufficient to utilize a

highly simplified set of dynamics along the desired spatial path and rely on a path-following control law to ensure close

tracking of the desired trajectory. The simplified dynamics used for trajectory generation are

Ûx(t) = V(t)


cos(γ(t)) cos(χ(t))

cos(γ(t)) sin(χ(t))

− sin(γ(t))


(1)

m ÛV(t) = T (t) − D(t), (2)

where V is the (scalar) speed, the thrust and drag forces act along the velocity vector of the vehicle, and the gravitational

force is canceled by lift from the vehicle’s aerodynamic surfaces. In effect, this is a simplified fixed-wing aircraft

case, where any thrust acting parallel to the lift vector is neglected and only for the component of thrust necessary to

overcome aerodynamic drag is accounted for. It is also assumed that the thrust and drag forces can be represented by

quadratic polynomials of propeller speed and airspeed, respectively. Specifically,

T (t) = KT (V(t))ω2
p (3)

D(t) =
1

2
ρSCDV(t)2 = KDV(t)2, (4)

where ρ is the density of air, S is the wetted area of the vehicle, CD is the drag coefficient, and KT (·) is a monotonic

polynomial function of the airspeed, V. The wetted area, drag coefficient, and air density are approximated here as

constant values.

The vehicle dynamics are subject to a subset of the following constraints:

Vmin ≤ V(t) ≤ Vmax, |at(t)| ≤ at,max, |ap(t)| ≤ ap,max, (5)
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γmin ≤ γ(t) ≤ γmax, | Ûγ(t)| ≤ Ûγmax, | Ûχ(t)| ≤ Ûχmax, (6)

ωp,min ≤ ωp(t) ≤ ωp,max . (7)

for all t ∈ [0, tf].

B. Trajectory Definition

We build upon the trajectory generation framework in [7, 9], and define the desired spatial path, xd : [0, 1] → R3,

as a Pythagorean-hodograph (PH) Bézier curve∗,

xd(ζ) =

5∑
k=0

x̄d,kb5
k(ζ), (8)

and the timing law, θ : [0, 1] → R, which determines the temporal component of the trajectory, as a Bézier curve,

θ(t̂) =
dζ(t̂)

dt̂
=

w∑
k=0

θ̄kb2
k(t̂), (9)

where t̂ is the normalized time t̂ = t/tf and ζ(t̂) : [0, 1] → [0, 1] is a a dimensionless path parameter expressed as a

function of the normalized time t̂. The timing law is related to the parametric speed of the vehicle by

σ(ζ) =
x ′d(ζ) . (10)

Since xd is a PH curve, the norm of its parametric derivative satisfies (x′
d
)Txd = σ

2 and σ therefore has an analytic

polynomial expression. Definitions and select properties of Bézier curves are provided in the appendix. Additional

information regarding Bézier curves and their properties may be found in [11]. Defining the desired trajectory in terms

of Bézier curves and leveraging the differential flatness of the simplified dynamics to express the constraint functions

as rational Bézier curves, it is possible to enforce the dynamic, acoustic, and mission-specific constraints without

computing the function values at (a potentially large number of) discrete points along the trajectory. This can be done

by using the computationally-friendly algorithms associated with Bézier curves, in particular the distance algorithm

from [12] which enables constraint function extrema to be computed to arbitrary precision without discretization.

Following [9], the equivalent set of constraints in Bézier form is:

Vmin ≤ V(t) ≤ Vmax, a2
t (t) ≤ a2

t,max, |ap(t)| ≤ ap,max, (11)

sin γmin ≤ sin γ(t) ≤ sin γmax, Ûγ2(t) ≤ Ûγ2
max, | Ûχ(t)| ≤ Ûχmax, (12)

Tmin ≤ T (t) ≤ Tmax. (13)

The constrained variables can be written in terms of the spatial path and timing law as

V(t̂) =
1

tf
σ(ζ(t̂))θ(t̂) =

14∑
k=0

V̄kb14
k (t̂) (14)

ap(t̂) =
1

t2
f

(
σ′(ζ(t̂))θ2(t̂) + σ(ζ(t̂))θ′(t̂)

)
=

13∑
k=0

āp,kb13
k (t̂) (15)

a2
t (t̂) =

1

t4
f

x ′d(ζ(t̂))θ′(t̂) + x ′′d (ζ(t̂))θ
2(t̂)

2
=

26∑
k=0

āt,kb26
k (t̂) (16)

sin γ(ζ) =
eT

z x
′
d
(ζ)

σ(ζ)
=

∑4
k=0 wγ,k γ̄kb4

k
(ζ)∑4

k=0 wγ,kb4
k
(ζ)

(17)

Ûγ2(t̂) =


σ(ζ(t̂))eT

z x
′′
d
(ζ(t̂)) − σ′(ζ(t̂))eT

z x
′
d
(ζ(t̂))

σ(ζ(t̂))

((
eT
xx

′
d
(ζ(t̂))

)2

+

(
eT
yxd(ζ(t̂))

)2

)1/2

(
θ(t̂)

tf

)

2

=

∑48
k=0 w Ûγ,k Û̄γkb48

k
(ζ)∑48

k=0 w Ûγ,kb48
k
(ζ)

(18)

∗xd(t) has a Pythagorean hodograph if x′
d
(t) = A(t)iA∗ (t), where A(t) is a quaternion polynomial of the form A(t) = u(t) + v(t)i + p(t)j +

q(t)k [11].
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Ûχ(t̂) =
eT

z

(
x ′
d
(ζ(t̂)) × x ′′

d
(ζ(t̂))

)
(
eT
x x

′
d
(ζ(t̂))

)2

+

(
eT
yx

′
d
(ζ(t̂))

)2

(
θ(t̂)

tf

)
=

∑24
k=0 wχ,k χ̄kb24

k
(ζ)∑24

k=0 wχ,kb24
k
(ζ)

., (19)

where ex =
[
1 0 0

]T

, ey =
[
0 1 0

]T

, and ez =
[
0 0 1

]T

.

Additional constraints on path boundary conditions and mission-specified constraints can also be imposed on the

trajectories. For multi-vehicle missions, temporal or spatial inter-vehicle separation constraints can also be specified.

With the trajectory and constraints defined as above, the optimization framework developed in [7, 9] can be used to

generate a feasible trajectory for the vehicle.

IV. Acoustic Noise Model and Constraint
For the purposes of this trajectory generation method, it is assumed that the acoustic power of a single propeller is

proportional to the angular speed of the propeller to the tenth power, p2
rms ∝ ω10

p ∝ M10
T

, where Mt is the Mach number

of the propeller tip. The exponent on tip Mach number was obtained from fitting data† obtained from the Propeller

Analysis System of the Aircraft Noise Prediction Program (PAS-ANOPP) [13]. Disregarding frequency dependence,

the overall sound pressure level from a single propeller can be written as OASPL′ ∝ 10 log10(M
10
t /M10

t,ref
), where

Mt,ref is a reference tip Mach number. It is further assumed that each propeller is an omnidirectional source, with

equal acoustic power radiated in all directions. Then, OASPL′ ∝ 10 log10((r/rref )
2), where r is the distance from the

source to an observer and rref is a reference distance. Under the further simplifying assumtions that the Np propellers

all operated at identical speeds, are incoherent sources (no interference between propellers), and acoustically compact

(wavelength is much larger than the distance between propellers), OASPL ∝ 10 log10(Np). Combining all the above

terms,

OASPL = OASPL′
ref + 10 log10

(
M10

t

M10
t,ref

)
+ 10 log10

(
r2
ref

r2

)
+ 10 log10

(
Np

)
, (20)

where it is noted that OASPL′
ref

is the reference value for a single propeller. The acoustic constraint on the OASPL

at observer A is then defined as OASPLA ≤ OASPLmax. To write an equivalent constraint in terms of parameters

derived from the spatial path and speed profile, first rearrange (20) as

M10
t

r2
=

M10
t,ref

r2
ref

Np

100.1(OASPLA−OASPLre f ). (21)

Substituting Mt = ωpdp/2c,(3), and noting that the distance from source to observer can be easily obtained from

r2
= ‖xd − A‖2, one can find the following relationship between thrust and OASPL:

T5

K5
T

r2
= βA ,

1024c10M10
t,ref

d10
p r2

ref
Np

100.1(OASPLA−OASPLre f ). (22)

Note that the thrust can be obtained in terms of the trajectory as T (t̂) = ap(t̂) + KDV(t̂). Since the right hand side is

monotonic in the argument OASPLA − OASPL′
ref

and that the quantities in the fraction sare constant we can form

the equivalent OASPL constraint

βA
(
t̂
)
=

T5
(
t̂
)

KT

(
V

(
t̂
) )5

r2
(
ζ

(
t̂
) ) ≤ βA,max . (23)

Since the denominator is always strictly greater than zero, β2
A

can be written as a rational Bézier curve:

βA
(
t̂
)
=

∑140
k=0 wβ,k β̄A,kb140

k

(
t̂
)

∑140
k=0 wβ,kb140

k

(
t̂
) , (24)

†The actual numeric fit value was M10.7
t , but M10

t still provides a good fit to the data while being much more convenient for the path-planning

framework.
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where it has been assumed that KT (·) can be approximated as linear. For KT (·) of degree nKT
≥ 2, the degree of βA

(
t̂
)

grows as 70nKT
+ 10.

The acoustic model in (20) is a simple model of the noise level at an observer location and can be useful as a rough

approximation. A more accurate representation is given by replacing the propeller tip Mach number with the effective

Mach number, Me, which takes the vehicle’s airspeed into account [14]:

Me =
Mt

1 + J(1 − Mt )
, (25)

where J = 2πV
ωpdp

is the propeller advance ratio. The OASPL at an observer is then

OASPLA = OASPL′
ref + 10 log10

((
Me

Me,ref

)8.5
)
+ 10 log10

(( rref

r

)2
)
+ 10 log10

(
Np

)
. (26)

Unfortunately, this expression cannot be represented as a (rational) Bézier curve in the trajectory parameters using the

dynamics defined in Section III. In this case, the OASPL constraint could be checked pointwise along the trajectory,

however, as a result, there would be no guarantee the constraint is not violated between the pointwise checks.

A. Frequency-Weighted Acoustic Metric

A-weighting [15] is a common frequency-weightednoise metric, used to adjust for the relative loudness of difference

frequency perceived by the human ear. The A-weighting scale as a function of frequency is

RA( f ) =
121942 f 4

( f 2
+ 20.62)

(
( f 2
+ 107.72)( f 2

+ 737.92)
) 1

2 ( f 2
+ 121942)

(27)

A( f ) = 20 log10 (RA( f )) + 2 (28)

where the frequency, f = ωpNB/(2π) = MtcNB/(πdp) and NB is the number of blades per propeller. Ideally the

A-weighted sound pressure level (SPL) calculation would be done with the effective tip Mach number, but as mentioned

in the previous section, the result would not be representable as a rational Bézier curve. The expression is therefore

approximated with Mt :

OASPLA = 10 log10

©
«

1

p̂2

N f∑
k=1

(
p̂2
rms,k

(
Mt

Mt,ref

)ξk ) (
r̂

r

)2ª®
¬
, (29)

where ·̂ denotes reference values, Nf is the number of frequencies, and ξk are obtained from numeric fits of predicted

SPL values. While (29) can be manipulated to obtain an equivalent OASPL constraint in rational Bézier curve form,

the resulting polynomial expression is of such a high degree as to be prohibitively computationally expensive to work

with. The expression could be checked pointwise along the trajectory but, as before, would not be guaranteed to satisfy

constraints between points.

The trajectory generation method proposed in this work appears to be limited to relatively simple acoustic models

and metrics, though the method is likely to still be useful as low-fidelity means of generating deconflicted trajectories

that satisfy acoustic constraints. Alternative trajectory generation approaches may be required when working with

other acoustic models/metrics that are either not differentially flat, result in very high-order polynomials, or otherwise

cannot be adequately represented in a polynomial structure. Such alternative approaches are the subject of further

research.

V. Simulation Example
In this section, we present a simulation example to illustrate the effect of the acoustic constraint on the solution of

the trajectory generation problem. Three vehicles are given initial and final positions such that if the vehicles traveled

straight-line paths between them, would result in violation of the acoustic constraints and collision due to loss of

inter-vehicle separation. Temporal separation is enforced for this example, thus the spatial paths may intersect, but the

vehicles cross the intersection points at different times [7]. Boundary conditions and enforced constraint values are

specified in Tables 1 and 2, respectively. The trajectories are optimized such that path arc length and speed variation
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Table 1 Boundary conditions for the trajectory generation problem.

Units
Boundary Condition Specification

Initial Final

Position,


x

y

altitude


m




0

0

5


,


0

30

5


,


0

−30

5









1000

1

10


,


1000

−15

10


,


1000

15

10






Speed, V m/s 27.5 27.5

Table 2 Enforced constraint values for the trajectory generation problem.

Units
Constraint Value

Min Max

Position,


x

y

altitude


m


−

−

0



−

−

400


Speed, V m/s 25 35

Heading, ψ deg − −

Heading Rate, Ûψ deg/s −30 30

Flight Path Angle, γ deg −30 30

Flight Path Angle Rate, Ûγ deg/s −30 30

Total Acceleration, ‖at ‖ m/s2 − 10

OASPL dB − 65

Separation Distance, mint̂
xd,i(t̂) − xd, j (t̂)

 m 5 −

are penalized. Figure 1 shows the computed spatial paths and the acoustic footprint on the ground. At each (x, y) point

on the ground, the OASPL value shown is the maximum at that point over the entire mission duration. It is assumed

that there is no acoustic interaction between vehicles. On the left of Figure 1, no acoustic constraint is enforced, and

the peak OASPL at the observer locations is approximately 83 dB. When the acoustic constraint is set to 65 dB, the

spatial paths are altered to meet the new constraint, as demonstrated on the right of Figure 1. The vehicles are forced

to deviate substantially from a straight line path in order to satisfy the acoustic constraint.

Figure 2 shows the OASPL values at the observer locations as a function of time, both with and without the

acoustic constraint. For the case without the acoustic constraint, the maximum OASPL measured at the first observer

is approximately 78 dB and the OASPL at the second observer peaks at about 83 dB. When the acoustic constraint

is enforced, the peak OASPL at both observers is reduced to the constraint limit, 65 dB. Because the vehicles travel

a greater distance at a slower average speed — as shown in Figure 3 — when the acoustic constraint is enforced, the

total mission time is greater than when the acoustic constraint is ignored. Hence, the set of traces without the acoustic

constraint end at an earlier time. The vehicles all reduce their speed to the minimum allowed in order to satisfy the

acoustic constraint. That the minimum speed occurs at t = 19s, while the OASPL peaks occur at t = 12s and t = 27s,

is an artifact of the polynomial structure imposed on the path. The acceleration of vehicles is relatively small and well

within the constraint limits, also shown in Figure 3.

The flight path angle, rate of change of flight path angle, and heading rate of change are plotted in Figure 4. There

is a significant change in initial and final flight path angles to accommodate the vertical deviation of the trajectories in

the presence of the acoustic constraint, but all values are well within constraints. The predicted vehicle motor speed as

a function of time is given in Figure 5. With the acoustic constraint enforced, the RPM reduces noticeably to lower the

noise at the observer locations. The shape of the RPM trace, where the minimum RPM occurs between the OASPL

peaks is again an artifact of the polynomial structure imposed on the problem.
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Fig. 1 Maximum OASPL on ground plane without (left) and with (right) acoustic constraint enforced.

Fig. 2 OASPL value at each observer as a function of mission time.

Fig. 3 Vehicle speed and acceleration as a function of mission time.
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Fig. 4 Flight path angle and rate of change and heading rate of change as a function of mission time.

Fig. 5 Predicted vehicle motor speed as a function of mission time.
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VI. Conclusion
This paper presented a method for generating trajectories that satisfy acoustic constraints at multiple observer

locations. The acoustic model and metric were implemented within an existing framework for cooperative trajectory

generation that provides collision-free trajectories for multiple vehicles. The acoustic model and constraint function

were formulated as (rational) Bézier curves for computation efficiency and to avoid discretization. A simulation

example demonstrated the modification to the trajectories required to satisfy the noise constraints. While the proposed

trajectory generation method works well for simple acoustic models and metrics, more sophisticated models and metrics

may violate the assumption of differential flatness, result in very high degree polynomials that are computationally

expensive to work with, or otherwise not fit well into the polynomial structure imposed by the trajectory generation

method. Alternative methods for trajectory generation may be required to work with more sophisticated acoustics

model and metrics and are the subject of further research.

Appendix

A. Bézier Curves Background

The Bernstein polynomial basis is defined as

bnk(ζ) =

(
n

k

)
(1 − ζ)n−kζ k, ζ ∈ [0, 1]. (30)

A Bézier curve c(ζ) of degree n and dimension d is defined as

c(ζ) =

n∑
k=0

c̄kbnk(ζ), ζ ∈ [0, 1], c̄k ∈ Rd . (31)

A rational Bézier curve r(ζ) of degree n and dimension d is defined as

r(ζ) =

∑n
k=0 wk r̄kbn

k
(ζ)∑n

k=0 wkbn
k
(ζ)

, ζ ∈ [0, 1], r̄k ∈ Rd, wk > 0, wk ∈ R. (32)

Let f (ζ), g(ζ) be Bézier curves of degree n and dimension d and let s(ζ) be a scalar Bézier curve of degree m

and w(ζ) a scalar degree n Bézier curve with w̄k > 0. Select mathematical operations on Bézier curves are then

accomplished via the following methods [9].

• Addition: h(ζ) = f (ζ) + g(ζ) =
∑n

k=0 h̄kbn
k
(ζ), where h̄k = f̄k + ḡk .

• Subtraction: h(ζ) = f (ζ) − g(ζ) =
∑n

k=0 h̄kbn
k
(ζ), where h̄k = f̄k − ḡk .

• Multiplication: h(ζ) = f (ζ)s(ζ) =
∑n+m

k=0 h̄kbn+m
k

(ζ), where h̄k =
∑min(m,k)

k=max(0,k−n)

(mj )(
n

k− j)

(m+nk )
f̄k−j s̄j .

• Division: h(ζ) = f (ζ)/w(ζ) =
∑n

k=0 w̄k h̄kb
n
k
(ζ)∑n

k=0
w̄kb

n
k
(ζ)

, where h̄k = f̄k/w̄k . Note that h(ζ) is a rational Bézier curve.

• Differentiation: h(ζ) = f ′(ζ) = d
dζ

f (ζ) =
∑n−1

k=0 h̄kbn−1
k

(ζ), where h̄k = n( f̄k+1 − f̄k).

• Integration: h(ζ) =
∫

f (ζ) = c0 +
∑n+1

k=0 h̄kbn+1
k

, where h̄k =
1

n+1

∑k+1
j=0 f̄k for k = 1, . . . , n + 1. The control

point h̄0 and integration constant c0 are calculated from the boundary conditions h(0) and h(1).

• Composition: h(ζ) = f (s(ζ)) =
∑nm

k=0 h̄kbn
k
(ζ), where h̄k = H̄n

0,k
, H̄0

i,0
= f̄i, and

H̄
j

i,k
=

1

(jmk )

∑min(k,m(j−1))

l=max(0,k−m)

(m(j−1)
l

) ( m
k−l

) [
(1 − s̄k−l)H̄

j−1

i,l
+ s̄k−lH̄

j−1

i+1,l

]
.

• Degree elevation: h(ζ) =
∑n+m

k=0 h̄kbn+m
k

(ζ) = f (ζ) =
∑n

k=0 f̄kbn
k
(ζ), where h̄k =

∑min(n,k)

j=max(0,k−m)

( m
k− j)(

n
j )

(n+mk )
f̄ j .

Additional properties of Bézier curves may be found in [11].
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