24,707 research outputs found

    On the quality of VoIP with DCCP for satellite communications

    Get PDF
    We present experimental results for the performance of selected voice codecs using DCCP with CCID4 congestion control over a satellite link. We evaluate the performance of both constant and variable data rate speech codecs for a number of simultaneous calls using the ITU E-model. We analyse the sources of packet losses and additionally analyse the effect of jitter which is one of the crucial parameters contributing to VoIP quality and has, to the best of our knowledge, not been considered previously in the published DCCP performance results. We propose modifications to the CCID4 algorithm and demonstrate how these improve the VoIP performance, without the need for additional link information other than what is already monitored by CCID4. We also demonstrate the fairness of the proposed modifications to other flows. Although the recently adopted changes to TFRC specification alleviate some of the performance issues for VoIP on satellite links, we argue that the characteristics of commercial satellite links necessitate consideration of further improvements. We identify the additional benefit of DCCP when used in VoIP admission control mechanisms and draw conclusions about the advantages and disadvantages of the proposed DCCP/CCID4 congestion control mechanism for use with VoIP applications

    Estimating packet loss rate in the access through application-level measurements

    Get PDF
    End user monitoring of quality of experience is one of the necessary steps to achieve an effective and winning control over network neutrality. The involvement of the end user, however, requires the development of light and user-friendly tools that can be easily run at the application level with limited effort and network resources usage. In this paper, we propose a simple model to estimate packet loss rate perceived by a connection, by round trip time and TCP goodput samples collected at the application level. The model is derived from the well-known Mathis equation, which predicts the bandwidth of a steady-state TCP connection under random losses and delayed ACKs and it is evaluated in a testbed environment under a wide range of different conditions. Experiments are also run on real access networks. We plan to use the model to analyze the results collected by the "network neutrality bot" (Neubot), a research tool that performs application-level network-performance measurements. However, the methodology is easily portable and can be interesting for basically any user application that performs large downloads or uploads and requires to estimate access network quality and its variation

    Transport congestion events detection (TCED): towards decorrelating congestion detection from TCP

    Get PDF
    TCP (Transmission Control Protocol) uses a loss-based algorithm to estimate whether the network is congested or not. The main difficulty for this algorithm is to distinguish spurious from real network congestion events. Other research studies have proposed to enhance the reliability of this congestion estimation by modifying the internal TCP algorithm. In this paper, we propose an original congestion event algorithm implemented independently of the TCP source code. Basically, we propose a modular architecture to implement a congestion event detection algorithm to cope with the increasing complexity of the TCP code and we use it to understand why some spurious congestion events might not be detected in some complex cases. We show that our proposal is able to increase the reliability of TCP NewReno congestion detection algorithm that might help to the design of detection criterion independent of the TCP code. We find out that solutions based only on RTT (Round-Trip Time) estimation are not accurate enough to cover all existing cases. Furthermore, we evaluate our algorithm with and without network reordering where other inaccuracies, not previously identified, occur

    TCP smart framing: a segmentation algorithm to reduce TCP latency

    Get PDF
    TCP Smart Framing, or TCP-SF for short, enables the Fast Retransmit/Recovery algorithms even when the congestion window is small. Without modifying the TCP congestion control based on the additive-increase/multiplicative-decrease paradigm, TCP-SF adopts a novel segmentation algorithm: while Classic TCP always tries to send full-sized segments, a TCP-SF source adopts a more flexible segmentation algorithm to try and always have a number of in-flight segments larger than 3 so as to enable Fast Recovery. We motivate this choice by real traffic measurements, which indicate that today's traffic is populated by short-lived flows, whose only means to recover from a packet loss is by triggering a Retransmission Timeout. The key idea of TCP-SF can be implemented on top of any TCP flavor, from Tahoe to SACK, and requires modifications to the server TCP stack only, and can be easily coupled with recent TCP enhancements. The performance of the proposed TCP modification were studied by means of simulations, live measurements and an analytical model. In addition, the analytical model we have devised has a general scope, making it a valid tool for TCP performance evaluation in the small window region. Improvements are remarkable under several buffer management schemes, and maximized by byte-oriented schemes

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate
    • 

    corecore