
Estimating Packet Loss Rate in the Access Through
Application-Level Measurements

Simone Basso
Nexa Center for Internet & Society

Dept. of Control and Computer Engineering
Politecnico di Torino, Turin, Italy

simone.basso@polito.it

Michela Meo
Dept. of Electronics and Telecommunications

Politecnico di Torino, Turin, Italy
michela.meo@polito.it

Antonio Servetti
Dept. of Control and Computer Engineering

Politecnico di Torino, Turin, Italy
antonio.servetti@polito.it

Juan Carlos De Martin
Nexa Center for Internet & Society

Dept. of Control and Computer Engineering
Politecnico di Torino, Turin, Italy

juancarlos.demartin@polito.it

ABSTRACT

End user monitoring of quality of experience is one of the neces-
sary steps to achieve an effective and winning control over network
neutrality. The involvement of the end user, however, requires the
development of light and user-friendly tools that can be easily run
at the application level with limited effort and network resources
usage. In this paper, we propose a simple model to estimate packet
loss rate perceived by a connection, by round trip time and TCP
goodput samples collected at the application level. The model is
derived from the well-known Mathis equation, which predicts the
bandwidth of a steady-state TCP connection under random losses
and delayed ACKs and it is evaluated in a testbed environment
under a wide range of different conditions. Experiments are also
run on real access networks. We plan to use the model to analyze
the results collected by the “network neutrality bot” (Neubot), a
research tool that performs application-level network-performance
measurements. However, the methodology is easily portable and
can be interesting for basically any user application that performs
large downloads or uploads and requires to estimate access network
quality and its variations.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network Opera-
tion—Network Monitoring; C.4 [Performance of Systems]: Mea-
surement techniques

General Terms

Measurement, Performance

Keywords

TCP, Network neutrality, Mathis model, Packet loss rate estimation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
W-MUST’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1476-3/12/08 ...$15.00.

1. INTRODUCTION
The debate on network neutrality is becoming more and more

relevant in economic, technical and political environments. As a
result, a number of active and passive tools have been developed
to assess network neutrality and make access networks more trans-
parent. Nowadays, many of the active tools that need, for perfor-
mance reasons, to be as close as possible to end users are available
through Measurement Lab (M-Lab) [5], a distributed world-scale
server platform, which hosts the server side component of the tools,
facilitates server discovery and data collection1. Still, a common
problem, for active and passive tools, is that many of them perform
only spot measurements, and large scale continuous monitoring is
instead needed to better inform the debate on network transparency,
characterization of ISP behavior and network neutrality [23] [16].

In turn, the necessity of large scale and continuous monitor-
ing fosters the implementation of measurement tools at application
level, using simple and nonintrusive methodologies, to incentive In-
ternet users to install them on their personal computers. Typically,
application level tools run TCP transfers, eventually emulating dif-
ferent protocols, and measure transfer speed and other application
level metrics. However, to get clear clues into network neutrality
and make monitoring effective, the implications of traffic discrim-
ination onto TCP connections need to be investigated and then ex-
ploited.

The starting point to study these implications is the observation
that, in a nonneutral network, packets belonging to discriminated
TCP flows are more likely to be delayed or dropped. The appli-
cation level effect of these discriminating policies is that the user
sees a reduced goodput, which is the application level speed mea-
sured at the receiver. More specifically: (i) a multiplicative increase
of delay yields to a multiplicative decrease of speed, because TCP
goodput is inversely proportional to the delay; (ii) a lost packet will
at least cause TCP to halve its sending rate, with nearly instanta-
neous effects on goodput.

However, since goodput depends on both delay and losses, a

1M-Lab is a joint initiative of New America Foundation’s Open
Technology Institute, Google, and academic researchers. Its 70+
servers are either installed at Internet Exchange Points, or hosted by
academic institutions and partner companies. In addition to host-
ing, M-Lab also provides support services, such as automatic data
collection and publishing. Hosted measurement tools include NDT
[7], Glasnost [3], NPAD [10], as well as Neubot [8], the tool we
developed and maintain.

7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11430313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

methodology that aims not only at detecting discrimination but also
at understanding the type of discrimination needs to estimate the
key parameters that control goodput: the round trip time (RTT),
and the packet loss rate (PLR). Once average RTT and PLR have
been estimated for different protocols, statistical analysis can be
used to decide whether there is a significant difference in the RTT
and PLR typically experienced by the protocols.

In this paper, we propose a model to estimate PLR of a network
path by measuring RTT and goodput during a 10-second TCP bulk
transfer, and we compare the model results with TCP analysis of
packet traces captured during the transfer. The 10-second require-
ment is imposed to the model to account for the fact that most ap-
plication level tools run their tests for a fixed number of seconds,
typically 10, to achieve their scalability, continuous monitoring and
low-overhead goals.

Among all the possible uses of the model, we are particularly
interested in using it to postprocess and analyze the results of the
“network neutrality bot” (Neubot), the tool that we developed and
maintain [8]. This tool, already described in our previous works
[18] [12] [14] [13], is an open source daemon that runs in the
background and periodically performs HTTP and BitTorrent per-
formance tests with instances of itself, installed on the servers pro-
vided by M-Lab. During the tests, the tool measures goodput and
RTT at application level, and stores the results on M-Lab servers2.

The model presented in this paper represents our effort to shift
Neubot test results analysis from goodput alone (see for example
our qualitative analysis of results in the Turin area [13]) to, as said
by Bauer et al., “a more nuanced characterization [...] of quality”
[15] that includes also RTT and estimated PLR. This new character-
ization brings practical advantages both for access network quality
and protocol discrimination studies, because the cause of different
performance (different goodput) is made explicit by differences in
delay and estimated loss rate. This information provides insights
on how the Internet access service can be improved and/or on the
cause of protocol discrimination, allowing researchers to prepare
and deploy, as said by Palfrey and Zittrain, “specially tailored” tests
[23].

The remainder of this paper is organized as follows. In section
2 we derive our model from the well-known Mathis equation, and
we discuss the model strengths, weaknesses, and application level
requirements. In section 3, we evaluate the model, both in a testbed
environment, to characterize its behavior in a wide range of net-
work conditions, and in controlled Internet experiments, where we
add random losses to an existing connection and we check whether
the model can detect that. Finally, in section 4 we draw the conclu-
sions, and we report about current and future research efforts.

2. MODEL
In this section we describe our model and discuss its strengths,

weaknesses and limitations.

2.1 Model description
The model for packet loss rate estimation at the application level

presented in this paper is based on the well-known Mathis model,
which is one of the simplest renewal-theory-based TCP model. The
Mathis model describes the macroscopic behavior of the conges-
tion avoidance algorithm and provides a simple formula to predict
the goodput of a sustained steady-state TCP connection [20]. More

2Test results are automatically published on Neubot and M-Lab
websites [9] [2], under the terms and conditions of Creative Com-
mons Zero license, so anyone is free to reuse them for for research
purposes.

complex and advanced models exist, e.g.: PFTK, which, unlike the
Mathis model, also models timeouts and window limitation [22];
Cardwell et al., which extends PFTK to model TCP latency and
the effects of slow start [17]; Guillemin et al., which also mod-
els congestion avoidance in presence of losses that span more than
one RTT [19]. However, for this first study we decided to use the
Mathis formula, because its parameters (goodput and RTT) are eas-
ily measurable at application level. Leaving the use of more com-
plex models for future investigations, if needed.

Because of its simplicity, Mathis formula builds on a number
of assumptions, and here we report only the ones that are more
relevant to our model:

1. SACKs are implemented, so that multiple losses in a RTT are
indication of a single congestion event;

2. the receiver window is big enough and the sender has always
data to send;

3. the connection never times-out and always recovers from a
loss using fast retransmit and fast recovery;

4. the connection is long enough to reach steady state;

5. the RTT is constant over the path.

Note that, if assumption 1-3 are not met, the result is a reduced
goodput, while, if assumption 4 is not met, the result may be a
higher goodput. This happens when slow start overestimates the
available capacity, and congestion avoidance starts from an operat-
ing point far from the actual equilibrium.

Under these assumptions the Mathis formula is:

good put =
MSS ·C

RT T ·

√

PLR
, (1)

where:

(a) good put is given by the size of delivered data over the delivery
completion time;

(b) MSS is the maximum segment size, that is typically 1460 bytes
per packet (even if other sizes are possible);

(c) C is a constant that incorporates the loss model and the ac-
knowledgment strategy. When the loss model is random and
TCP uses delayed ACKs, the value of this constant is 0.93;

(d) RT T is the round trip time;

(e) PLR is the number of congestion signals per acknowledged
packet.

In our model we assume MSS = 1460,C = 0.93, and we derive
the packet loss rate (PLR) from (1) to obtain:

PLR =

(

MSS ·C

good put ·RT T

)2

(2)

Using (2), PLR can be estimated by a simple measure of goodput
and RTT.

In the next subsection we discuss how to compute goodput and
RTT at the application-level and what are the limits of the model.

8

2.2 Implementation requirements
The proposed model is particularly interesting because it can be

easily implemented at the application level. In fact, it only requires
the measures of connection goodput and RTT, which are both easy
to estimate with a long-enough TCP connection, especially when
both endpoints are under control, as happens for Neubot and other
measurement tools. However, it should be possible to use this
model also when just one endpoint is under control: for example,
one can employ a modified wget [4] or curl [1] that estimates the
PLR of an arbitrarily long download every 10 second.

Goodput can be estimated at the receiver by dividing the number
of received bytes by the data transfer completion time. It should not
be computed at the sender, because the sender might underestimate
the completion time. In particular, the measure of the completion
time at the sender may not take into account the time required for
emptying the pipe and delivering all the data on the fly.

RTT can be estimated by measuring the time required for the
connect() to complete, which is an upper bound of the three-way
handshake time. A more robust strategy, which operates during
the connection life time, consists in sending small requests that
elicit immediate small responses and measuring the elapsed time
between the request and the response. This is similar to what TCP
does, when evaluates the time elapsed from a packet transmission
and the reception of the associated ACK. However, whether this
strategy can be implemented or not depends on the design of the
application and on the specification of the application protocol.

2.3 Model discussion
The model limits derive from the assumptions implied in the

Mathis formula, listed in Section 2.1. First, the model assumes
a constant RTT and it trusts a RTT measurement performed before
the actual transmission (or after it). So, the model is less accurate
in networks with high RTT variations, such as wireless networks.
Moreover, if the SYN or SYN|ACK segment is lost, connect() time
is not a valid estimation of RTT, because it incorporates at least
one retransmission timeout, as Mellia and Zhang’s model for short
lived connections shows [21].

Second, the model assumes random losses and fast recovery, but
typically losses are correlated on the Internet. In particular, when
the bottleneck implements drop tail queue management, a burst
of packets (or part of it) can be lost, and the sender may receive
less than three duplicate ACKs in the next RTT, as documented by
PFTK model [22]. When this happens, the sender cannot trigger
fast recovery and stops until the transmission timeout expires. In
turn, this reduces the goodput and bumps the estimated PLR.

Third, the model assumes that the connection is long enough to
reach the equilibrium. When this is not true, the estimated PLR
may be lower than the real PLR. In particular, it is not the abso-
lute elapsed time that matters, but, rather, the number of rounds

(periods of duration equal to the RTT that correspond, in conges-
tion avoidance, to the time needed to increase the window by one
segment) experienced by the connection. When the PLR is small,
slow start may overestimate the available bandwidth, and a short
connection does not run for enough rounds to average that effect.
Similarly, when the PLR is high, the connection may not run for
enough rounds to average the effect of one (or few) lucky lossless
rounds.

Fourth, the model assumes the receiver window is big enough
and does not limit the transfer rate. When this assumption is not
met, the model does not estimate the real PLR, but rather the “vir-
tual” PLR imposed by the receiver buffer. This can be easily de-
tected at the packet trace level, checking whether the connection
experienced any loss event, while online detection at application

level seems more problematic. Still, educated guesses are possible,
since the behavior of major operating systems with respect to au-
tomatic receiver buffer tuning is known, and it is straightforward
to query for operating system name and version at the application
level.

Fifth, the model assumes that the sender has always data to send.
In other words, this methodology can be used to estimate the PLR
experienced by continuous single-connection TCP data transfers
only. Whether this is possible or not, is something that clearly de-
pends on the design of the application and on the specification of
the application protocol.

Thus, while application-level measurements are very appealing
and simpler both to implement and to run than low level ones, a
number of factors need to be taken in account in the data analy-
sis process to ensure a reliable interpretation of the collected data.
Then, in the remainder of this paper we evaluate the model and an-
alyze the measurements taking care of the remarks presented in this
section.

3. MODEL EVALUATION
The model is evaluated using a testbed environment as well as

controlled Internet experiments. The testbed environment is used
to evaluate the model in a wide range of network conditions: netem

is used to emulate paths with different RTTs and (random) PLRs3.
Controlled experiments are performed to check whether the model
can detect the injection of extra (random) losses into a real Internet
path. In this case too, losses were generated using netem.

Both in testbed and in controlled experiments, goodput and RTT
samples are collected at the application level, during a TCP bulk
transfer test. RTT is estimated by measuring the time connect()

takes to complete4. Goodput is computed by dividing the amount of
bytes received over the elapsed time. The test duration is controlled
by the sender, who stops sending after 10 seconds and waits for the
receiver to close the connection5. We have collected 16 samples for
each different network condition, i.e. for each (RTT, PLR) couple.

3.1 Evaluation using testbed
The model was evaluated using the testbed that emulates a wide

range of network conditions. The testbed was composed by three
Linux 3.0.0 virtual machines, running on VirtualBox and connected
using internal network emulation. The sender and the receiver ma-
chines were attached to two different virtual networks. In turn, the
two networks were connected by the third machine, which routed
traffic and performed network emulation using netem. Overall,
when netem did not kick in, the setup could sustain a TCP bulk
transfer rate of more than 300 Mbit/s, and the RTT overhead was
negligible.

Figure 1 shows the measured goodput as a function of the im-
posed RTT. Each point is the result of a single transfer test for dif-
ferent netem-imposed RTT and PLR conditions. RTT ranges from
a minimum of 0.02 s to a maximum of 0.3 s, while PLR ranges
from 1e-5 to 0.03. Points with different PLRs are given different
levels of gray, to show more clearly that the higher the PLR is, the

3Netem [6] is a Linux kernel module that allows to emulate char-
acteristics of wide area networks (WAN), by adding losses and/or
delays to network interfaces. The basic usage allows to add a fixed
delay and a random loss probability, but more advanced config-
urations are possible, allowing to specify delay distribution and
loss correlation. Other emulated WAN properties include packet
reordering, duplication and corruption.
4This is what Neubot does, for simplicity.
5The test runs for 10 seconds, regardless the path characteristics,
to model the behavior of Neubot and other application level tools.

9

1e+02

1e+03

1e+04

1e+05

0.10 1.00

G
o
o
d
p
u
t
(K

b
it
/s

)

RTT (s)

PLR=1e-05
PLR=1e-04
PLR=1e-03
PLR=1e-02

Figure 1: Goodput as a function of the RTT, in the testbed

environment. Points are grouped by the magnitude of the im-

posed PLR.

1e-05

1e-04

1e-03

1e-02

1e-01

1e-04 1e-03 1e-02

E
s
ti
m

a
te

d
 P

L
R

PLR

0.0 <= RTT < 0.1
0.1 <= RTT < 0.2
0.2 <= RTT < 0.3
0.3 <= RTT < 0.6

Figure 2: Estimated PLR, computed using Eq. (2), as a func-

tion of the PLR imposed using netem. Points are grouped by

the magnitude of RTT.

lower the goodput is. Outliars on the bottom right of the plot are
caused by lost SYN or ACK segments. Indeed, the measured RTT
is three seconds (which is the default initial value of the retrans-
mission timeout) plus roughly one RTT. These points have been
omitted in subsequent plots and have not been used to compute
PLR estimations.

Figure 2 shows the estimated PLR, computed using (2), as a
function of the PLR and RTT imposed by netem. Each point is the
result of a single transfer test and points with different RTTs are
given different levels of gray. Although there is a lot of variation,
the data pattern seems to suggest that points with smaller RTTs are
more likely grouped at the top of the plot. Similarly, points with
higher RTTs tend to group at the bottom.

To better investigate this behavior, we have averaged points hav-
ing the same netem PLR and the same RTT order of magnitude.
The results are shown in Figure 3: average curves follow loosely
the bisection of the graph, which is the line that a perfect model
would plot. More in detail, the figure leads to the following re-
marks:

(i) the PLR predictions are, in general, quite good;

1e-05

1e-04

1e-03

1e-02

1e-01

1e-05 1e-04 1e-03 1e-02 1e-01

A
v
e
ra

g
e
 e

s
ti
m

a
te

d
 P

L
R

PLR

0.0 <= RTT < 0.1
0.1 <= RTT < 0.2
0.2 <= RTT < 0.3
0.3 <= RTT < 0.6

bisection

Figure 3: Averaged estimated PLR, computed using Eq. (2),

as a function of the PLR, emulated with netem. Samples are

grouped in buckets of size 0.1 s and then averaged.

(ii) the average of points with RTT lower than 0.1 s is above the
bisection line, while all the other averages are below it: when
RTT is small the model slightly overestimates PLR, the op-
posite is true for large values of RTT;

(iii) as expected, the model works best in the region where the
PLR is not too small, namely, bigger than 10−4.

To gain further insights into the model behavior, we analyze with
tcptrace6 the packet traces captured at the sender: Figure 4 shows
the traces for two cases with significantly different RTT values and
equal PLRs. Both connections exit from slow start with approx-
imately the same outstanding window, but, since test duration is
fixed, connections with higher RTT run for less rounds. So, they
receive less congestion signals and cannot adjust their congestion
window as quickly as the connections with smaller RTTs.

When PLR is very low or very high, TCP operating point is not
the one assumed by Mathis model. In particular, when the PLR is
very low, all connections are buffer limited. In this condition, con-
nections with lower RTTs run for more rounds and deliver more
bytes. Thus, their goodput is higher, and the estimated PLR is
lower.

On the contrary, the combined effect of high PLR and high RTT
makes the estimated PLR more noisy. Indeed, retransmission time-
outs are more likely (since PLR is high) and TCP runs for fewer
rounds (since RTT is high). Thus, the measured goodput varies a
lot, depending on whether TCP experienced a timeout, and, in turn,
the estimated PLR oscillates, as shown in Figure 3.

3.2 Evaluation using Internet experiments
Besides testbed experiments, the model was evaluated using In-

ternet experiments, in which we estimate the default PLR of one
ADSL and one WAN connection, and then we inject extra losses
with netem, to check whether the model detects that. In both cases,
the netem router was a Linux 3.0.0 workstation, connected via LAN

6Tcptrace [11] is a packet trace processing tool that performs sev-
eral different types of TCP-level analysis. In particular, in this
paper we have exploited two tcptrace features: the capability of
counting the number of retransmission events that occurred dur-
ing the lifetime of a TCP connection; the capability of measuring
the amount of data sent but not acknowledged, also know as “out-
standing window”, which is a good approximation of the conges-
tion window.

10

0

20 k

40 k

60 k

80 k

100 k

120 k

140 k

 0 2 4 6 8 10 12

O
u
ts

ta
n
d
in

g
 w

in
d
o
w

 (
b
y
te

s
)

Time (s)

RTT = 0.022 s, PLR = 0.001
RTT = 0.201 s, PLR = 0.001

Figure 4: Outstanding window, computed using tcptrace, for

two testbed connections, with equal PLR and significantly dif-

ferent RTT.

1e-05

1e-04

1e-03

1e-02

1e-01

1e-05 1e-04 1e-03 1e-02 1e-01

A
v
e
ra

g
e
 e

s
ti
m

a
te

d
 P

L
R

Average tcptrace PLR

ADSL 7 Mbit/s, RTT = 0.06 s, w/o losses
ADSL 7 Mbit/s, RTT = 0.06 s, w/ losses
WAN 100 Mbit/s, RTT = 0.029 s, w/o losses
WAN 100 Mbit/s, RTT = 0.029 s, w/ losses
WAN 100 Mbit/s, RTT = 0.059 s, w/ losses
bisection

Figure 5: Average PLR of controlled Internet experiments, es-

timated using Eq. (2), as a function of average PLR, computed

using tcptrace.

to our campus network and to a Linux 3.0.0 sender. In the ADSL
case, the receiver was a MacOSX 10.6 laptop, the nominal down-
stream speed was 7 Mbit/s, and the average RTT during the tests
was 0.06 s. In the WAN case, the receiver was a Linux 2.6 server,
located in Germany, attached to 100 Mbit/s, and the average RTT
during the tests was 0.029 s.

Figure 5 shows controlled experiment results. Each point is the
average of 16 transfer tests, performed in similar network condi-
tions. To estimate actual PLR on the x-axis, we run tcptrace on
packet traces captured at the sender and divide rexmt data pkts7 by
actual data pkts8. Analysis of time sequence graphs for selected
traces confirms that rexmt data pkts is a good approximation of the
number of congestion signals, therefore we believe our low-level
PLR estimate to be reasonably accurate (even if there is one excep-
tion, investigated and explained later).

Results show that the model can predict quite reliably the PLR
of an ADSL connection. In particular, the prediction is accurate

7This variable is the count of all TCP segments with at least one
data byte in the payload.
8This variable is the count of all TCP segments that tcptrace be-
lieves to be retransmissions.

0

50 k

100 k

150 k

200 k

250 k

300 k

 0 2 4 6 8 10 12

O
u
ts

ta
n
d
in

g
 w

in
d
o
w

 (
b
y
te

s
)

Time (s)

WAN, RTT = 0.059 s, PLR = 0.002
ADSL, RTT = 0.06 s, PLR = 0.002

Figure 6: Outstanding window, computed using tcptrace, for

WAN and ADSL connections, with similar imposed PLR, and

where artificial delay was added to the WAN connection to

make its RTT comparable with the ADSL one.

for PLRs around 10−3, with an error of about 10%, and, while it
is less accurate for higher PLRs, the error is always below 50%.
Low-level analysis confirms that the error increases because the
probability of timeout is higher, with higher PLRs (the window is
smaller so it is more likely that TCP does not receive three dupli-
cate ACKs). Incidentally, since our model is based on the Mathis
formula, which does not model timeouts, it is reasonable for the
error to increase slightly in presence of timeouts.

The case of the WAN connection is more problematic. On the
one hand, the model detects the injection of extra losses. But, on the
other hand, there are some inconsistencies, and low level analysis
provides useful insights to help understanding and explaining them.

First, WAN-connection tcptrace PLR is lower when we impose
a small extra amount of random losses with netem. This happens
because the typical behavior of the connection is to saturate a drop
tail bottleneck. So, tcptrace counts more retransmissions because
more than one packet is lost per round. For example, during the
worst run, tcptrace reports that 50 segments were retransmitted,
but the time sequence graph shows that they correspond to five
congestion signals only, producing two slow starts and one fast re-
covery. On the contrary, when we impose a small extra (uniformly
and randomly distributed) PLR, the bottleneck queue is under con-
trol, there are less catastrophic congestion events, and the PLR es-
timated with tcptrace is closer to the actual number of congestion
signals.

Second, the estimated-PLR error of WAN connection increases
with low imposed PLRs. Low-level analysis with tcptrace shows
that this happens because the connection “fills the pipeline” and
the congestion window neither grows nor halves (and this is not
because TCP is buffer limited, since there is plenty of space at the
receiver, according to tcptrace). When this happens, TCP deliv-
ers more bytes per RTT than when it behaves as predicted by the
Mathis model, hence the estimated PLR is lower than expected.

Third, the model reports that the WAN connection is always bet-
ter than the ADSL, in terms of PLR. This is somewhat expected,
and, to better understand what happens in terms of the model, we
have run one extra experiment, where we impose the WAN con-
nection exactly the same extra-PLR and RTT experienced by one
ADSL connection experiment. This point is shown separately in
Figure 5, and netem was employed to artificially bump the WAN
connection delay to 0.06 s.

11

This experiment shows us that, even if we strive to put the WAN
and the LAN connection on similar conditions, imposing the same
RTT and PLR9, there is always a small bias in favor of the WAN
connection. What happens is that, whenever there is a random fluc-
tuation and a cycle without imposed losses ensues, connections run
at their native speed, and the WAN connection, which is 10x faster,
is able to deliver more bytes.

Indeed, as shown in Figure 6, which plots the outstanding win-
dow of the best run of each connection, the WAN outstanding win-
dow is free to grow much higher during slow start. Moreover, both
connections have a three-second loss-free period, and, in this pe-
riod, the WAN congestion window increases linearly, while the
ADSL one seems to saturate, probably because the pipeline is al-
ready full, and the connection is just filling the home router buffer.

4. CONCLUSION
This paper introduces a simple model, based on the Mathis for-

mula, to estimate, at the application level, the packet loss rate (PLR)
experienced by a TCP connection. To perform the estimation, the
application needs to (i) measure the goodput of a bulk TCP trans-
fer that runs for a fixed amount of time (10 seconds) and (ii) esti-
mate the round trip time (RTT), before or after the transfer. Testbed
experiments show that the model predicts the imposed PLR value
with a residual (small) dependence on the RTT. Controlled Internet
experiments show that the model can reliably predict the PLR im-
posed to an ADSL connection. The model can detect the injection
of losses on a WAN connection as well. However, since the esti-
mation is less precise in this case, our research efforts are currently
focused on refining the model for this scenario.

5. REFERENCES
[1] cURL and libcurl. http://curl.haxx.se/.

[2] Data from M-Lab Tools. http://measurementlab.net/data.

[3] Glasnost: Test if your ISP is shaping your traffic.
http://broadband.mpi-sws.org/transparency/bttest-mlab.php.

[4] GNU Wget. http://www.gnu.org/software/wget/.

[5] Measurement-Lab | M-Lab. http://measurementlab.net/.

[6] netem | The Linux Foundation.
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

[7] Network Diagnostic Tool (NDT).
http://www.internet2.edu/performance/ndt/.

[8] Neubot | The network neutrality bot. http://neubot.org/.

[9] Neubot data | Neubot. http://neubot.org/data.

[10] NPAD - Network Path and Application Diagnosis project.
http://www.ucar.edu/npad/.

9These are similar conditions since the two connections experience
the same RTT. And since, for both connections, the imposed PLR
is much higher than the default one, and dominates over it.

[11] tcptrace - Official Homepage. http://www.tcptrace.org/.

[12] Basso, S. and Servetti, A. and De Martin, J.C. Rationale,
Design, and Implementation of the Network Neutrality Bot.
In Congresso AICA 2010 (L’Aquila), 2010.

[13] Basso, S. and Servetti, A. and De Martin, J.C. The
hitchhiker’s guide to the Network Neutrality Bot test
methodology. In Congresso AICA 2011 (Torino), 2011.

[14] Basso, S. and Servetti, A. and De Martin, J.C. The network
neutrality bot architecture: a preliminary approach for
self-monitoring of Internet access QoS. In Computers and

Communications (ISCC), 2011 IEEE Symposium on, pages
1131–1136. IEEE, 2011.

[15] Bauer, S. and Clark, D. and Lehr, W. Understanding
broadband speed measurements. 2012.

[16] Bischof, Z.S. and Otto, J.S. and Sánchez, M.A. and Rula, J.P.
and Choffnes, D.R. and Bustamante, F.E. Crowdsourcing ISP
characterization to the network edge. In ACM SIGCOMM

Workshop on Measurements Up the STack (W-MUST). ACM,
2011.

[17] Cardwell, N. and Savage, S. and Anderson, T. Modeling TCP
latency. In INFOCOM 2000. Nineteenth Annual Joint

Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE, volume 3, pages 1742–1751.
IEEE, 2000.

[18] De Martin, J.C. and Glorioso, A. The Neubot project: A
collaborative approach to measuring internet neutrality. In
Technology and Society, 2008. ISTAS 2008. IEEE

International Symposium on, pages 1–4. IEEE, 2008.

[19] Guillemin, F. and Robert, P. and Zwart, B. Performance of
TCP in the presence of correlated packet loss. In 15th ITC

Specialist Seminar on Internet Traffic Engineering and

Traffic Management (Wurzburg), 2002.

[20] Mathis, M. and Semke, J. and Mahdavi, J. and Ott, T. The
macroscopic behavior of the TCP congestion avoidance
algorithm. ACM SIGCOMM Computer Communication

Review, 27(3):67–82, 1997.

[21] Mellia, M. and Zhang, H. TCP model for short lived flows.
Communications Letters, IEEE, 6(2):85–87, 2002.

[22] Padhye, J. and Firoiu, V. and Towsley, D. and Kurose, J.
Modeling TCP throughput: A simple model and its empirical
validation. In ACM SIGCOMM Computer Communication

Review, volume 28, pages 303–314. ACM, 1998.

[23] Palfrey, J. and Zittrain, J. Better Data for a Better Internet.
Science, 334(6060):1210–1211, 2011.

12

