1,182 research outputs found

    Hydraulic Press Commissioning Cost Reductions via Machine Learning Solutions

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58In industrial processes, PI controllers remain as the dominant control technique due to their applicability and performance reliability. However, there could be applications where the PI controller is not enough to fulfill certain specifications, such as in the force control loop of hydraulic presses, in which specific pressure profiles need to be ensured in order not to damage theworkpiece. An Iterative Learning Control scheme is presented as a Machine Learning control alternative to the PI controller, in order to track the pressure profiles required for any operational case. Iterative Learning Control is based on the notion that a system that realizes the same process repeatedly, e.g. hydraulic presses, can improve its performance by learning from previous iterations. The improvements are revealed in high-fidelity simulations of a hydraulic press model, in which the tracking performance of the PI controller is considerably improved in terms of overshoot and the settling time of pressure signal.UPV/EHU, Grupo de Investigación de Inteligencia Computaciona

    Hydraulic Press Commissioning Cost Reductions via Machine Learning Solutions

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58In industrial processes, PI controllers remain as the dominant control technique due to their applicability and performance reliability. However, there could be applications where the PI controller is not enough to fulfill certain specifications, such as in the force control loop of hydraulic presses, in which specific pressure profiles need to be ensured in order not to damage theworkpiece. An Iterative Learning Control scheme is presented as a Machine Learning control alternative to the PI controller, in order to track the pressure profiles required for any operational case. Iterative Learning Control is based on the notion that a system that realizes the same process repeatedly, e.g. hydraulic presses, can improve its performance by learning from previous iterations. The improvements are revealed in high-fidelity simulations of a hydraulic press model, in which the tracking performance of the PI controller is considerably improved in terms of overshoot and the settling time of pressure signal.UPV/EHU, Grupo de Investigación de Inteligencia Computaciona

    Iterative learning control in the commissioning of industrial presses

    Get PDF
    182 p.This thesis presents solutions to the control problems that exist nowadays in industrial presses, followed by a discussion of the most appropriate control schemes that may be used for their solution. Iterative Learning Control is subsequently analyzed, as the most promising control scheme for machine presses, due to its capability to improve the performance of a system that operates repeatedly.A novel Iterative Learning Control design is presented, which makes use of the dynamic characteristics of the system to improve the current controller performance and stability. This, results in an adaptation of the presented Iterative Learning Control design to two use cases: the single-input-single-output force control of mechanical presses and the multiple-input-multiple-output position control of hydraulic presses. While existing Iterative Learning Control approaches are also described and applied to the previously mentioned use cases, the presented novel approach has been shown to outperform the existing algorithms in terms of control performance.The proposed Iterative Learning control algorithms are validated in an experimental hydraulic test rig, in which the performance, robustness and stability of the algorithm have been demonstrated

    Learning and Reacting with Inaccurate Prediction: Applications to Autonomous Excavation

    Get PDF
    Motivated by autonomous excavation, this work investigates solutions to a class of problem where disturbance prediction is critical to overcoming poor performance of a feedback controller, but where the disturbance prediction is intrinsically inaccurate. Poor feedback controller performance is related to a fundamental control problem: there is only a limited amount of disturbance rejection that feedback compensation can provide. It is known, however, that predictive action can improve the disturbance rejection of a control system beyond the limitations of feedback. While prediction is desirable, the problem in excavation is that disturbance predictions are prone to error due to the variability and complexity of soil-tool interaction forces. This work proposes the use of iterative learning control to map the repetitive components of excavation forces into feedforward commands. Although feedforward action shows useful to improve excavation performance, the non-repetitive nature of soil-tool interaction forces is a source of inaccurate predictions. To explicitly address the use of imperfect predictive compensation, a disturbance observer is used to estimate the prediction error. To quantify inaccuracy in prediction, a feedforward model of excavation disturbances is interpreted as a communication channel that transmits corrupted disturbance previews, for which metrics based on the sensitivity function exist. During field trials the proposed method demonstrated the ability to iteratively achieve a desired dig geometry, independent of the initial feasibility of the excavation passes in relation to actuator saturation. Predictive commands adapted to different soil conditions and passes were repeated autonomously until a pre-specified finish quality of the trench was achieved. Evidence of improvement in disturbance rejection is presented as a comparison of sensitivity functions of systems with and without the use of predictive disturbance compensation

    Volume 3 – Conference: Thursday, March 10

    Get PDF
    10. Internationales Fluidtechnisches Kolloquiu

    Development of a Gait Simulator for Testing Lower Limb Prostheses

    Get PDF
    corecore