5,350 research outputs found

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics

    A battery hardware-in-the-loop setup for concurrent design and evaluation of real-time optimal HEV power management controllers

    Get PDF
    Razavian, R. S., Azad, N. L., & McPhee, J. (2013). A battery hardware-in-the-loop setup for concurrent design and evaluation of real-time optimal HEV power management controllers. International Journal of Electric and Hybrid Vehicles, 5(3), 177. Final version published by Inderscience Publishers, and available at: https://doi.org/10.1504/IJEHV.2013.057604We have developed a battery hardware-in-the-loop (HIL) setup, which can expedite the design and evaluation of power management controllers for hybrid electric vehicles (HEVs) in a novel cost- and time-effective manner. The battery dynamics have a significant effect on the HEV power management controller design; therefore, physical batteries are included in the simulation loop for greater simulation fidelity. We use Buckingham's Pi Theorem in the scaled-down battery HIL setup to reduce development and testing efforts, while maintaining the flexibility and fidelity of the control loop. In this paper, usefulness of the setup in parameter identification of a simple control-oriented battery model is shown. The model is then used in the power management controller design, and the real-time performance of the designed controller is tested with the same setup in a realistic control environment. Test results show that the designed controller can accurately capture the dynamics of the real system, from which the assumptions made in its design process can be confidently justified.Financial support for this research has been provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Toyota, and Maplesoft

    Coupling of Real-Time and Co-Simulation for the Evaluation of the Large Scale Integration of Electric Vehicles into Intelligent Power Systems

    Full text link
    This paper addresses the validation of electric vehicle supply equipment by means of a real-time capable co-simulation approach. This setup implies both pure software and real-time simulation tasks with different sampling rates dependent on the type of the performed experiment. In contrast, controller and power hardware-in-the-loop simulations are methodologies which ask for real-time execution of simulation models with well-defined simulation sampling rates. Software and real-time methods are connected one to each other using an embedded software interface. It is able to process signals with different time step sizes and is called "LabLink". Its design implies both common and specific input and output layers (middle layer), as well as a data bus (core). The LabLink enables the application of the co-simulation methodology on the proposed experimental platform targeting the testing of electric vehicle supply equipment. The test setup architecture and representative examples for the implemented co-simulation are presented in this paper. As such, a validation of the usability of this testing platform can be highlighted aiming to support a higher penetration of electric vehicles.Comment: 2017 IEEE Vehicle Power and Propulsion Conference (VPPC

    Virtual prototyping of vehicular electric steering assistance system using co-simulations

    Get PDF
    Virtual prototyping is a practical necessity in vehicle system development. From desktop simulation to track testing, several simulation approaches, such as co-simulation and hardware-in-loop (HIL) simulation, are used. However, due to interfacing problems, the consistency of testing results may not be ensured. Correspondingly, inherent inaccuracies result from numerical coupling error and non-transparent HIL interface, which involves control tracking error, delay error, and attached hardware and noise effects. This work aims to resolve these problems and provide seamless virtual prototypes for vehicle and electric power-assisted steering (EPAS) system development.The accuracy and stability of explicit parallel co-simulation and HIL simulation are investigated. The imperfect factors propagate in the simulation tools like perturbations, yield inaccuracy, and even instability according to system dynamics. Hence, reducing perturbations (coupling problem) and improving system robustness (architecture problem) are considered.In the coupling problem, a delay compensation method relying on adaptive filters is developed for real-time simulation. A novel co-simulation coupling method on H-infinity synthesis is developed to improve accuracy for a wide frequency range and achieve low computational cost. In the architecture problem, a force(torque)-velocity coupling approach is employed. The application of a force (torque) variable to a component with considerable impedance, e.g., the steering rack (EPAS motor), yields a small loop gain as well as robust co-simulation and HIL simulation. On a given EPAS HIL system, an interface algorithm is developed for virtually shifting the impedance, thus enhancing system robustness.The theoretical findings and formulated methods are tested on generic benchmarks and implemented on a vehicle-EPAS engineering case. In addition to the acceleration of simulation speed, accuracy and robustness are also improved. Consequently, consistent testing results and extended validated ranges of virtual prototypes are obtained

    Three-Phase Power Converter Based Real-Time Synchronous Generator Emulation

    Get PDF
    To bridge the gap between power system research and their real application in power grids, a Hardware Test-Bed (HTB) with modular three-phase power converters has been developed at the CURENT center, the University of Tennessee, Knoxville, to emulate transmission level power systems with actual power flowing. This dissertation focuses on the development and verification of a real-time synchronous generator (SG) emulator in the HTB. The research involved in this dissertation aims at designing a proper control to achieve emulator performance goal and investigating the sources of error and its influence on interconnected SG-emulator networks. First, different interface algorithms (IAs) are compared and the voltage type ideal transformer model (ITM) is selected considering the accuracy and stability. At the same time, closed-loop voltage control with current feed-forward is proposed to decrease the error caused by the non-ideality of the power amplifier. The emulation is then verified through two different ways. First, the output waveforms of the emulator in experiment are compared with the simulation under the same condition. Second, a transfer function perturbation (TFP) based error model is obtained and redefined as the relative error for the amplitude and phase between the emulated and the target system over the frequency range of interest. The major cause of the error is investigated through a quantitative analysis of the error with varying parameters. Third, the stability issue associated with the interconnection of two SG emulators is studied. The small signal models of the two-generation system with constant current and constant impedance load are developed, and the main reasons that cause instability are researched and verified. The developed SG emulator is also verified in the two-area system by comparing the system dynamics visually. At last, the 6th-order SG model including transformer voltages and saturation effect is applied in the three-phase symmetrical fault scenario. Control parameters are designed based on the TFP error evaluation of the fault condition. The developed SG emulator is then tested and verified in line-to-line fault condition. In addition, the stability of the new SG emulator is studied again and compared with the previous emulation
    • 

    corecore