128,724 research outputs found

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Distribution System State Estimation in the Presence of High Solar Penetration

    Full text link
    Low-to-medium voltage distribution networks are experiencing rising levels of distributed energy resources, including renewable generation, along with improved sensing, communication, and automation infrastructure. As such, state estimation methods for distribution systems are becoming increasingly relevant as a means to enable better control strategies that can both leverage the benefits and mitigate the risks associated with high penetration of variable and uncertain distributed generation resources. The primary challenges of this problem include modeling complexities (nonlinear, non-convex power-flow equations), limited availability of sensor measurements, and high penetration of uncertain renewable generation. This paper formulates the distribution system state estimation as a nonlinear, weighted, least squares problem, based on sensor measurements as well as forecast data (both load and generation). We investigate the sensitivity of state estimator accuracy to (load/generation) forecast uncertainties, sensor accuracy, and sensor coverage levels.Comment: accepted for presentation at the IEEE 2019 American Control Conferenc

    Energy-efficient data acquisition for accurate signal estimation in wireless sensor networks

    Get PDF
    Long-term monitoring of an environment is a fundamental requirement for most wireless sensor networks. Owing to the fact that the sensor nodes have limited energy budget, prolonging their lifetime is essential in order to permit long-term monitoring. Furthermore, many applications require sensor nodes to obtain an accurate estimation of a point-source signal (for example, an animal call or seismic activity). Commonly, multiple sensor nodes simultaneously sample and then cooperate to estimate the event signal. The selection of cooperation nodes is important to reduce the estimation error while conserving the network’s energy. In this paper, we present a novel method for sensor data acquisition and signal estimation, which considers estimation accuracy, energy conservation, and energy balance. The method, using a concept of ‘virtual clusters,’ forms groups of sensor nodes with the same spatial and temporal properties. Two algorithms are used to provide functionality. The ‘distributed formation’ algorithm automatically forms and classifies the virtual clusters. The ‘round robin sample scheme’ schedules the virtual clusters to sample the event signals in turn. The estimation error and the energy consumption of the method, when used with a generalized sensing model, are evaluated through analysis and simulation. The results show that this method can achieve an improved signal estimation while reducing and balancing energy consumption

    Probabilistic approaches to the design of wireless ad hoc and sensor networks

    Get PDF
    The emerging wireless technologies has made ubiquitous wireless access a reality and enabled wireless systems to support a large variety of applications. Since the wireless self-configuring networks do not require infrastructure and promise greater flexibility and better coverage, wireless ad hoc and sensor networks have been under intensive research. It is believed that wireless ad hoc and sensor networks can become as important as the Internet. Just as the Internet allows access to digital information anywhere, ad hoc and sensor networks will provide remote interaction with the physical world. Dynamics of the object distribution is one of the most important features of the wireless ad hoc and sensor networks. This dissertation deals with several interesting estimation and optimization problems on the dynamical features of ad hoc and sensor networks. Many demands in application, such as reliability, power efficiency and sensor deployment, of wireless ad hoc and sensor network can be improved by mobility estimation and/or prediction. In this dissertation, we study several random mobility models, present a mobility prediction methodology, which relies on the analysis of the moving patterns of the mobile objects. Through estimating the future movement of objects and analyzing the tradeoff between the estimation cost and the quality of reliability, the optimization of tracking interval for sensor networks is presented. Based on the observation on the location and movement of objects, an optimal sensor placement algorithm is proposed by adaptively learn the dynamical object distribution. Moreover, dynamical boundary of mass objects monitored in a sensor network can be estimated based on the unsupervised learning of the distribution density of objects. In order to provide an accurate estimation of mobile objects, we first study several popular mobility models. Based on these models, we present some mobility prediction algorithms accordingly, which are capable of predicting the moving trajectory of objects in the future. In wireless self-configuring networks, an accurate estimation algorithm allows for improving the link reliability, power efficiency, reducing the traffic delay and optimizing the sensor deployment. The effects of estimation accuracy on the reliability and the power consumption have been studied and analyzed. A new methodology is proposed to optimize the reliability and power efficiency by balancing the trade-off between the quality of performance and estimation cost. By estimating and predicting the mass objects\u27 location and movement, the proposed sensor placement algorithm demonstrates a siguificant improvement on the detection of mass objects with nearmaximal detection accuracy. Quantitative analysis on the effects of mobility estimation and prediction on the accuracy of detection by sensor networks can be conducted with recursive EM algorithms. The future work includes the deployment of the proposed concepts and algorithms into real-world ad hoc and sensor networks

    Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks

    Full text link
    A detailed environment perception is a crucial component of automated vehicles. However, to deal with the amount of perceived information, we also require segmentation strategies. Based on a grid map environment representation, well-suited for sensor fusion, free-space estimation and machine learning, we detect and classify objects using deep convolutional neural networks. As input for our networks we use a multi-layer grid map efficiently encoding 3D range sensor information. The inference output consists of a list of rotated bounding boxes with associated semantic classes. We conduct extensive ablation studies, highlight important design considerations when using grid maps and evaluate our models on the KITTI Bird's Eye View benchmark. Qualitative and quantitative benchmark results show that we achieve robust detection and state of the art accuracy solely using top-view grid maps from range sensor data.Comment: 6 pages, 4 tables, 4 figure

    Monte Carlo optimization of decentralized estimation networks over directed acyclic graphs under communication constraints

    Get PDF
    Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth–limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We employ a class of in–network processing strategies that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of communications and estimation error penalty. This perspective captures a broad range of possibilities for processing under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk
    • 

    corecore