25,284 research outputs found

    Accuracy evaluation of overlapping and multi-resolution clustering algorithms on large datasets

    Get PDF
    Performance of clustering algorithms is evaluated with the help of accuracy metrics. There is a great diversity of clustering algorithms, which are key components of many data analysis and exploration systems. However, there exist only few metrics for the accuracy measurement of overlapping and multi-resolution clustering algorithms on large datasets. In this paper, we first discuss existing metrics, how they satisfy a set of formal constraints, and how they can be applied to specific cases. Then, we propose several optimizations and extensions of these metrics. More specifically, we introduce a new indexing technique to reduce both the runtime and the memory complexity of the Mean F1 score evaluation. Our technique can be applied on large datasets and it is faster on a single CPU than state-of-the-art implementations running on high-performance servers. In addition, we propose several extensions of the discussed metrics to improve their effectiveness and satisfaction to formal constraints without affecting their efficiency. All the metrics discussed in this paper are implemented in C++ and are available for free as open-source packages that can be used either as stand-alone tools or as part of a benchmarking system to compare various clustering algorithms.Comment: The application executable and sources: https://github.com/eXascaleInfolab/xmeasure

    Spike sorting for large, dense electrode arrays

    Get PDF
    Developments in microfabrication technology have enabled the production of neural electrode arrays with hundreds of closely spaced recording sites, and electrodes with thousands of sites are under development. These probes in principle allow the simultaneous recording of very large numbers of neurons. However, use of this technology requires the development of techniques for decoding the spike times of the recorded neurons from the raw data captured from the probes. Here we present a set of tools to solve this problem, implemented in a suite of practical, user-friendly, open-source software. We validate these methods on data from the cortex, hippocampus and thalamus of rat, mouse, macaque and marmoset, demonstrating error rates as low as 5%

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS
    corecore