1,469,033 research outputs found

    Application of a Fractional Order Integral Resonant Control to increase the achievable bandwidth of a nanopositioner

    Get PDF
    The congress program will essentially include papers selected on the highest standard by the IPC, according to the IFAC guidelines www.ifac-control.org/publications/Publications-requirements-1.4.pdf, and published in open access in partnership with Elsevier in the IFAC-PapersOnline series, hosted on the ScienceDirect platform www.sciencedirect.com/science/journal/24058963. Survey papers overviewing a research topic are also most welcome. Contributed papers will have usual 6 pages length limitation. 12 pages limitation will apply to survey papers.Publisher PD

    Quantum Stabilizer Codes Can Realize Access Structures Impossible by Classical Secret Sharing

    Full text link
    We show a simple example of a secret sharing scheme encoding classical secret to quantum shares that can realize an access structure impossible by classical information processing with limitation on the size of each share. The example is based on quantum stabilizer codes.Comment: LaTeX2e, 5 pages, no figure. Comments from readers are welcom

    Fat vs. thin threading approach on GPUs: application to stochastic simulation of chemical reactions

    Get PDF
    We explore two different threading approaches on a graphics processing unit (GPU) exploiting two different characteristics of the current GPU architecture. The fat thread approach tries to minimise data access time by relying on shared memory and registers potentially sacrificing parallelism. The thin thread approach maximises parallelism and tries to hide access latencies. We apply these two approaches to the parallel stochastic simulation of chemical reaction systems using the stochastic simulation algorithm (SSA) by Gillespie (J. Phys. Chem, Vol. 81, p. 2340-2361, 1977). In these cases, the proposed thin thread approach shows comparable performance while eliminating the limitation of the reaction system’s size

    Optimality of Orthogonal Access for One-dimensional Convex Cellular Networks

    Full text link
    It is shown that a greedy orthogonal access scheme achieves the sum degrees of freedom of all one-dimensional (all nodes placed along a straight line) convex cellular networks (where cells are convex regions) when no channel knowledge is available at the transmitters except the knowledge of the network topology. In general, optimality of orthogonal access holds neither for two-dimensional convex cellular networks nor for one-dimensional non-convex cellular networks, thus revealing a fundamental limitation that exists only when both one-dimensional and convex properties are simultaneously enforced, as is common in canonical information theoretic models for studying cellular networks. The result also establishes the capacity of the corresponding class of index coding problems
    • …
    corecore