12,598 research outputs found

    Privacy-Preserving Trust Management Mechanisms from Private Matching Schemes

    Full text link
    Cryptographic primitives are essential for constructing privacy-preserving communication mechanisms. There are situations in which two parties that do not know each other need to exchange sensitive information on the Internet. Trust management mechanisms make use of digital credentials and certificates in order to establish trust among these strangers. We address the problem of choosing which credentials are exchanged. During this process, each party should learn no information about the preferences of the other party other than strictly required for trust establishment. We present a method to reach an agreement on the credentials to be exchanged that preserves the privacy of the parties. Our method is based on secure two-party computation protocols for set intersection. Namely, it is constructed from private matching schemes.Comment: The material in this paper will be presented in part at the 8th DPM International Workshop on Data Privacy Management (DPM 2013

    Federated authentication and authorisation for e-science

    Get PDF
    The Grid and Web service community are defining a range of standards for a complete solution for security. The National e-Science Centre (NeSC) at the University of Glasgow is investigating how the various pre-integration components work together in a variety of e-Science projects. The EPSRC-funded nanoCMOS project aims to allow electronics designers and manufacturers to use e-Science technologies and expertise to solve problems of device variability and its impact on system design. To support the security requirements of nanoCMOS, two NeSC projects (VPMan and OMII-SP) are providing tools to allow easy configuration of security infrastructures, exploiting previous successful projects using Shibboleth and PERMIS. This paper presents the model in which these tools interoperate to provide secure and simple access to Grid resources for non-technical users

    Secure Cloud Storage: A Framework for Data Protection as a Service in the Multi-cloud Environment

    Get PDF
    This paper introduces Secure Cloud Storage (SCS), a framework for Data Protection as a Service (DPaaS) to cloud computing users. Compared to the existing Data Encryption as a Service (DEaaS) such as those provided by Amazon and Google, DPaaS provides more flexibility to protect data in the cloud. In addition to supporting the basic data encryption capability as DEaaS does, DPaaS allows users to define fine-grained access control policies to protect their data. Once data is put under an access control policy, it is automatically encrypted and only if the policy is satisfied, the data could be decrypted and accessed by either the data owner or anyone else specified in the policy. The key idea of the SCS framework is to separate data management from security management in addition to defining a full cycle of data security automation from encryption to decryption. As a proof-of-concept for the design, we implemented a prototype of the SCS framework that works with both BT Cloud Compute platform and Amazon EC2. Experiments on the prototype have proved the efficiency of the SCS framework

    Distributed Virtual System (DIVIRS) Project

    Get PDF
    As outlined in our continuation proposal 92-ISI-50R (revised) on contract NCC 2-539, we are (1) developing software, including a system manager and a job manager, that will manage available resources and that will enable programmers to program parallel applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes; (2) developing communications routines that support the abstractions implemented in item one; (3) continuing the development of file and information systems based on the virtual system model; and (4) incorporating appropriate security measures to allow the mechanisms developed in items 1 through 3 to be used on an open network. The goal throughout our work is to provide a uniform model that can be applied to both parallel and distributed systems. We believe that multiprocessor systems should exist in the context of distributed systems, allowing them to be more easily shared by those that need them. Our work provides the mechanisms through which nodes on multiprocessors are allocated to jobs running within the distributed system and the mechanisms through which files needed by those jobs can be located and accessed

    ESPOONERBAC_{{ERBAC}}: Enforcing Security Policies In Outsourced Environments

    Full text link
    Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality. There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments. However, such solutions do not support access policies to regulate access to a particular subset of the stored data. For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access decisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposing \textbf{ESPOONERBAC\mathit{ESPOON_{ERBAC}}} for enforcing RBAC policies in outsourced environments. ESPOONERBAC\mathit{ESPOON_{ERBAC}} enforces RBAC policies in an encrypted manner where a curious service provider may learn a very limited information about RBAC policies. We have implemented ESPOONERBAC\mathit{ESPOON_{ERBAC}} and provided its performance evaluation showing a limited overhead, thus confirming viability of our approach.Comment: The final version of this paper has been accepted for publication in Elsevier Computers & Security 2013. arXiv admin note: text overlap with arXiv:1306.482

    Abstractions, accounts and grid usability

    Get PDF
    The vision of the Grid is one of seamless, virtual and constantly changing resources where users need not concern themselves about details, such as exactly where an application is running or where their data is being stored. However, seamless and virtual often imply a lack of control that users may be wary of, or even opposed to. Drawing upon our studies of HCI and of collaborative work, this paper examines whether the Grid development community should be taking this vision literally and argues for the need for accountability of systems ‘in interaction’. We give examples of an alternative approach that seeks to provide ways in which administrators, technical support and user communities can make sense of the behaviour of the complex socio-technical ensembles that are the reality of Grids
    corecore