8 research outputs found

    Footsteps in the fog: Certificateless fog-based access control

    Get PDF
    The proliferating adoption of the Internet of Things (IoT) paradigm has fuelled the need for more efficient and resilient access control solutions that aim to prevent unauthorized resource access. The majority of existing works in this field follow either a centralized approach (i.e. cloud-based) or an architecture where the IoT devices are responsible for all decision-making functions. Furthermore, the resource-constrained nature of most IoT devices make securing the communication between these devices and the cloud using standard cryptographic solutions difficult. In this paper, we propose a distributed access control architecture where the core components are distributed between fog nodes and the cloud. To facilitate secure communication, our architecture utilizes a Certificateless Hybrid Signcryption scheme without pairing. We prove the effectiveness of our approach by providing a comparative analysis of its performance in comparison to the commonly used cloud-based centralized architectures. Our implementation uses Azure – an existing commercial platform, and Keycloak – an open-source platform, to demonstrate the real-world applicability. Additionally, we measure the performance of the adopted encryption scheme on two types of resource-constrained devices to further emphasize the applicability of the proposed architecture. Finally, the experimental results are coupled with a theoretical analysis that proves the security of our approach

    Access Control in Industrial Internet of Things

    Get PDF
    The Industrial Internet of Things (IIoT) is an ecosystem that consists of - among others - various networked sensors and actuators, achieving mainly advancements related with lowering production costs and providing workflow flexibility. Introducing access control in such environments is considered to be challenging, mainly due to the variety of technologies and protocols in IIoT devices and networks. Thus, various access control models and mechanisms should be examined, as well as the additional access control requirements posed by these industrial environments. To achieve these aims, we elaborate on existing state-of-the-art access control models and architectures and investigate access control requirements in IIoT, respectively. These steps provide valuable indications on what type of an access control model and architecture may be beneficial for application in the IIoT. We describe an access control architecture capable of achieving access control in IIoT using a layered approach and based on existing virtualization concepts (e.g., the cloud). Furthermore, we provide information on the functionality of the individual access control related components, as well as where these should be placed in the overall architecture. Considering this research area to be challenging, we finally discuss open issues and anticipate these directions to provide interesting multi-disciplinary insights in both industry and academia

    Footsteps in the fog: Certificateless fog-based access control

    Get PDF
    The proliferating adoption of the Internet of Things (IoT) paradigm has fuelled the need for more efficient and resilient access control solutions that aim to prevent unauthorized resource access. The majority of existing works in this field follow either a centralized approach (i.e. cloud-based) or an architecture where the IoT devices are responsible for all decision-making functions. Furthermore, the resource-constrained nature of most IoT devices make securing the communication between these devices and the cloud using standard cryptographic solutions difficult. In this paper, we propose a distributed access control architecture where the core components are distributed between fog nodes and the cloud. To facilitate secure communication, our architecture utilizes a Certificateless Hybrid Signcryption scheme without pairing. We prove the effectiveness of our approach by providing a comparative analysis of its performance in comparison to the commonly used cloud-based centralized architectures. Our implementation uses Azure – an existing commercial platform, and Keycloak – an open-source platform, to demonstrate the real-world applicability. Additionally, we measure the performance of the adopted encryption scheme on two types of resource-constrained devices to further emphasize the applicability of the proposed architecture. Finally, the experimental results are coupled with a theoretical analysis that proves the security of our approach

    Towards Secure Fog Computing: A Survey on Trust Management, Privacy, Authentication, Threats and Access Control

    Get PDF
    Fog computing is an emerging computing paradigm that has come into consideration for the deployment of Internet of Things (IoT) applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of autonomous end devices, which contribute to the processing. However, the variety of devices offered across different users are not audited. Hence, the security of Fog devices is a major concern that should come into consideration. Therefore, to provide the necessary security for Fog devices, there is a need to understand what the security concerns are with regards to Fog. All aspects of Fog security, which have not been covered by other literature works, need to be identified and aggregated. On the other hand, privacy preservation for user’s data in Fog devices and application data processed in Fog devices is another concern. To provide the appropriate level of trust and privacy, there is a need to focus on authentication, threats and access control mechanisms as well as privacy protection techniques in Fog computing. In this paper, a survey along with a taxonomy is proposed, which presents an overview of existing security concerns in the context of the Fog computing paradigm. Moreover, the Blockchain-based solutions towards a secure Fog computing environment is presented and various research challenges and directions for future research are discussed
    corecore