5,229 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Detection of postural transitions using machine learning

    Get PDF
    The purpose of this project is to study the nature of human activity recognition and prepare a dataset from volunteers doing various activities which can be used for constructing the various parts of a machine learning model which is used to identify each volunteers posture transitions accurately. This report presents the problem definition, equipment used, previous work in this area of human activity recognition and the resolution of the problem along with results. Also this report sheds light on the process and the steps taken to undertake this endeavour of human activity recognition such as building of a dataset, pre-processing the data by applying filters and various windowing length techniques, splitting the data into training and testing data, performance of feature selection and feature extraction and finally selecting the model for training and testing which provides maximum accuracy and least misclassification rates. The tools used for this project includes a laptop equipped with MATLAB and EXCEL and MEDIA PLAYER CLASSIC respectively which have been used for data processing, model training and feature selection and Labelling respectively. The data has been collected using an Inertial Measurement Unit contains 3 tri-axial Accelerometers, 1 Gyroscope, 1 Magnetometer and 1 Pressure sensor. For this project only the Accelerometers, Gyroscope and the Pressure sensor is used. The sensor is made by the members of the lab named ‘The Technical Research Centre for Dependency Care and Autonomous Living (CETpD) at the UPC-ETSEIB campus. The results obtained have been satisfactory, and the objectives set have been fulfilled. There is room for possible improvements through expanding the scope of the project such as detection of chronic disorders or providing posture based statistics to the end user or even just achieving a higher rate of sensitivity of transitions of posture by using better features and increasing the dataset size by increasing the number of volunteers.Incomin

    Towards a Practical Pedestrian Distraction Detection Framework using Wearables

    Full text link
    Pedestrian safety continues to be a significant concern in urban communities and pedestrian distraction is emerging as one of the main causes of grave and fatal accidents involving pedestrians. The advent of sophisticated mobile and wearable devices, equipped with high-precision on-board sensors capable of measuring fine-grained user movements and context, provides a tremendous opportunity for designing effective pedestrian safety systems and applications. Accurate and efficient recognition of pedestrian distractions in real-time given the memory, computation and communication limitations of these devices, however, remains the key technical challenge in the design of such systems. Earlier research efforts in pedestrian distraction detection using data available from mobile and wearable devices have primarily focused only on achieving high detection accuracy, resulting in designs that are either resource intensive and unsuitable for implementation on mainstream mobile devices, or computationally slow and not useful for real-time pedestrian safety applications, or require specialized hardware and less likely to be adopted by most users. In the quest for a pedestrian safety system that achieves a favorable balance between computational efficiency, detection accuracy, and energy consumption, this paper makes the following main contributions: (i) design of a novel complex activity recognition framework which employs motion data available from users' mobile and wearable devices and a lightweight frequency matching approach to accurately and efficiently recognize complex distraction related activities, and (ii) a comprehensive comparative evaluation of the proposed framework with well-known complex activity recognition techniques in the literature with the help of data collected from human subject pedestrians and prototype implementations on commercially-available mobile and wearable devices

    Elderly Fall Detection Systems: A Literature Survey

    Get PDF
    Falling is among the most damaging event elderly people may experience. With the ever-growing aging population, there is an urgent need for the development of fall detection systems. Thanks to the rapid development of sensor networks and the Internet of Things (IoT), human-computer interaction using sensor fusion has been regarded as an effective method to address the problem of fall detection. In this paper, we provide a literature survey of work conducted on elderly fall detection using sensor networks and IoT. Although there are various existing studies which focus on the fall detection with individual sensors, such as wearable ones and depth cameras, the performance of these systems are still not satisfying as they suffer mostly from high false alarms. Literature shows that fusing the signals of different sensors could result in higher accuracy and lower false alarms, while improving the robustness of such systems. We approach this survey from different perspectives, including data collection, data transmission, sensor fusion, data analysis, security, and privacy. We also review the benchmark data sets available that have been used to quantify the performance of the proposed methods. The survey is meant to provide researchers in the field of elderly fall detection using sensor networks with a summary of progress achieved up to date and to identify areas where further effort would be beneficial

    PLXTRM : prediction-led eXtended-guitar tool for real-time music applications and live performance

    Get PDF
    peer reviewedThis article presents PLXTRM, a system tracking picking-hand micro-gestures for real-time music applications and live performance. PLXTRM taps into the existing gesture vocabulary of the guitar player. On the first level, PLXTRM provides a continuous controller that doesn’t require the musician to learn and integrate extrinsic gestures, avoiding additional cognitive load. Beyond the possible musical applications using this continuous control, the second aim is to harness PLXTRM’s predictive power. Using a reservoir network, string onsets are predicted within a certain time frame, based on the spatial trajectory of the guitar pick. In this time frame, manipulations to the audio signal can be introduced, prior to the string actually sounding, ’prefacing’ note onsets. Thirdly, PLXTRM facilitates the distinction of playing features such as up-strokes vs. down-strokes, string selections and the continuous velocity of gestures, and thereby explores new expressive possibilities

    Fall detection for the elderly in a smart room by using an enhanced one class support vector machine

    Get PDF
    In this paper, we propose a novel and robust fall detection system by using a one class support vector machine based on video information. Video features, including the differences of centroid position and orientation of a voxel person over a time interval are extracted from multiple cameras. A one class support vector machine (OCSVM) is used to distinguish falls from other activities, such as walking, sitting, standing, bending or lying. Unlike the conventional OCSVM which only uses the target samples corresponding to falls for training, some non-fall samples are also used to train an enhanced OCSVM with a more accurate decision boundary. From real video sequences, the success of the method is confirmed, that is, by adding a certain number of negative samples, both high true positive detection rate and low false positive detection rate can be obtained

    Elderly Fall Detection by Sensitive Features Based on Image Processing and Machine Learning

    Get PDF
    The world’s elderly population is growing every year. It is easy to say that the fall is one of the major dangers that threaten them. This paper offers a Trained Model for fall detection to help the older people live comfortably and alone at home. The purpose of this paper is to investigate appropriate methods for diagnosing falls by analyzing the motion and shape characteristics of the human body. Several machine learning technologies have been proposed for automatic fall detection. The proposed research reported in this paper detects a moving object by using a background subtraction algorithm with a single camera. The next step is to extract the features that are very important and generally describe the human shape and show the difference between the human falls from the daily activities. These features are based on motion, changes in human shape, and oval diameters around the human and temporal head position. The features extracted from the human mask are eventually fed in to various machine learning classifiers for fall detection. Experimental results showed the efficiency and reliability of the proposed method with a fall detection rate of 81% that have been tested with UR Fall Detection dataset
    • …
    corecore