120 research outputs found

    RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors

    Get PDF
    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques

    ADVANCED INTRAVASCULAR MAGNETIC RESONANCE IMAGING WITH INTERACTION

    Get PDF
    Intravascular (IV) Magnetic Resonance Imaging (MRI) is a specialized class of interventional MRI (iMRI) techniques that acquire MRI images through blood vessels to guide, identify and/or treat pathologies inside the human body which are otherwise difficult to locate and treat precisely. Here, interactions based on real-time computations and feedback are explored to improve the accuracy and efficiency of IVMRI procedures. First, an IV MRI-guided high-intensity focused ultrasound (HIFU) ablation method is developed for targeting perivascular pathology with minimal injury to the vessel wall. To take advantage of real-time feedback, a software interface is developed for monitoring thermal dose with real-time MRI thermometry, and an MRI-guided ablation protocol developed and tested on muscle and liver tissue ex vivo. It is shown that, with cumulative thermal dose monitored with MRI thermometry, lesion location and dimensions can be estimated consistently, and desirable thermal lesions can be achieved in animals in vivo. Second, to achieve fully interactive IV MRI, high-resolution real-time 10 frames-per-second (fps) MRI endoscopy is developed as an advance over prior methods of MRI endoscopy. Intravascular transmit-receive MRI endoscopes are fabricated for highly under-sampled radial-projection MRI in a clinical 3Tesla MRI scanner. Iterative nonlinear reconstruction is accelerated using graphics processor units (GPU) to achieve true real-time endoscopy visualization at the scanner. The results of high-speed MRI endoscopy at 6-10 fps are consistent with fully-sampled MRI endoscopy and histology, with feasibility demonstrated in vivo in a large animal model. Last, a general framework for automatic imaging contrast tuning over MRI protocol parameters is explored. The framework reveals typical signal patterns over different protocol parameters from calibration imaging data and applies this knowledge to design efficient acquisition strategies and predicts contrasts under unacquired protocols. An external computer in real-time communication with the MRI console is utilized for online processing and controlling MRI acquisitions. This workflow enables machine learning for optimizing acquisition strategies in general, and provides a foundation for efficiently tuning MRI protocol parameters to perform interventional MRI in the highly varying and interactive environments commonly in play. This work is loosely inspired by prior research on extremely accelerated MRI relaxometry using the minimal-acquisition linear algebraic modeling (SLAM) method

    Real-Time Magnetic Resonance Imaging

    Get PDF
    Real‐time magnetic resonance imaging (RT‐MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast‐switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady‐state free precession, and single‐shot rapid acquisition with relaxation enhancement. RT‐MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft‐tissue contrast, as well as flow information. In this review, we discuss the history of RT‐MRI, fundamental tradeoffs, enabling technology, established applications, and current trends

    Cardiac magnetic resonance assessment of central and peripheral vascular function in patients undergoing renal sympathetic denervation as predictor for blood pressure response

    Get PDF
    Background: Most trials regarding catheter-based renal sympathetic denervation (RDN) describe a proportion of patients without blood pressure response. Recently, we were able to show arterial stiffness, measured by invasive pulse wave velocity (IPWV), seems to be an excellent predictor for blood pressure response. However, given the invasiveness, IPWV is less suitable as a selection criterion for patients undergoing RDN. Consequently, we aimed to investigate the value of cardiac magnetic resonance (CMR) based measures of arterial stiffness in predicting the outcome of RDN compared to IPWV as reference. Methods: Patients underwent CMR prior to RDN to assess ascending aortic distensibility (AAD), total arterial compliance (TAC), and systemic vascular resistance (SVR). In a second step, central aortic blood pressure was estimated from ascending aortic area change and flow sequences and used to re-calculate total arterial compliance (cTAC). Additionally, IPWV was acquired. Results: Thirty-two patients (24 responders and 8 non-responders) were available for analysis. AAD, TAC and cTAC were higher in responders, IPWV was higher in non-responders. SVR was not different between the groups. Patients with AAD, cTAC or TAC above median and IPWV below median had significantly better BP response. Receiver operating characteristic (ROC) curves predicting blood pressure response for IPWV, AAD, cTAC and TAC revealed areas under the curve of 0.849, 0.828, 0.776 and 0.753 (p = 0.004, 0.006, 0.021 and 0.035). Conclusions: Beyond IPWV, AAD, cTAC and TAC appear as useful outcome predictors for RDN in patients with hypertension. CMR-derived markers of arterial stiffness might serve as non-invasive selection criteria for RDN

    A Novel System and Image Processing for Improving 3D Ultrasound-guided Interventional Cancer Procedures

    Get PDF
    Image-guided medical interventions are diagnostic and therapeutic procedures that focus on minimizing surgical incisions for improving disease management and reducing patient burden relative to conventional techniques. Interventional approaches, such as biopsy, brachytherapy, and ablation procedures, have been used in the management of cancer for many anatomical regions, including the prostate and liver. Needles and needle-like tools are often used for achieving planned clinical outcomes, but the increased dependency on accurate targeting, guidance, and verification can limit the widespread adoption and clinical scope of these procedures. Image-guided interventions that incorporate 3D information intraoperatively have been shown to improve the accuracy and feasibility of these procedures, but clinical needs still exist for improving workflow and reducing physician variability with widely applicable cost-conscience approaches. The objective of this thesis was to incorporate 3D ultrasound (US) imaging and image processing methods during image-guided cancer interventions in the prostate and liver to provide accessible, fast, and accurate approaches for clinical improvements. An automatic 2D-3D transrectal ultrasound (TRUS) registration algorithm was optimized and implemented in a 3D TRUS-guided system to provide continuous prostate motion corrections with sub-millimeter and sub-degree error in 36 ± 4 ms. An automatic and generalizable 3D TRUS prostate segmentation method was developed on a diverse clinical dataset of patient images from biopsy and brachytherapy procedures, resulting in errors at gold standard accuracy with a computation time of 0.62 s. After validation of mechanical and image reconstruction accuracy, a novel 3D US system for focal liver tumor therapy was developed to guide therapy applicators with 4.27 ± 2.47 mm error. The verification of applicators post-insertion motivated the development of a 3D US applicator segmentation approach, which was demonstrated to provide clinically feasible assessments in 0.246 ± 0.007 s. Lastly, a general needle and applicator tool segmentation algorithm was developed to provide accurate intraoperative and real-time insertion feedback for multiple anatomical locations during a variety of clinical interventional procedures. Clinical translation of these developed approaches has the potential to extend the overall patient quality of life and outcomes by improving detection rates and reducing local cancer recurrence in patients with prostate and liver cancer

    ModĂ©lisation de l’ablation radiofrĂ©quence pour la planification de la rĂ©section de tumeurs abdominales

    Get PDF
    The outcome of radiofrequency ablation (RFA) of abdominal tumors is challenged by the presence of blood vessels and time-varying thermal conductivity, which make patient-specific planning extremely difficult. By providing predictive tools, biophysical models may help clinicians to plan and guide the procedure for an effective treatment. We introduce a detailed computational model of the biophysical mechanisms involved in RFA of hepatic tumors such as heat diffusion and cellular necrosis. It simulates the extent of ablated tissue based on medical images, from which patient-specific models of the liver, visible vessels and tumors are segmented. In this thesis, a new approach for solving these partial differential equations based on the Lattice Boltzmann Method is introduced. The model is first evaluated against clinical data of patients who underwent RFA of liver tumors. Then, a comprehensive pre-clinical experiment that combines multi-modal, pre- and post-operative anatomical and functional images, as well as the interventional monitoring of the temperature and delivered power is presented. This enables an end-to-end validation framework that considers the most comprehensive data set for model validation. Then, we automatically estimate patient-specific parameters to better predict the ablated tissue. This personalization strategy has been validated on 7 ablations from 3 clinical cases. From the pre-clinical study, we can go further in the personalization by comparing the simulated temperature and delivered power with the actual measurements during the procedure. These contributions have led to promising results, and open new perspectives in RFA guidance and planning.L'ablation par radiofrĂ©quence (ARF) de tumeurs abdominales est rendue difficile par l’influence des vaisseaux sanguins et les variations de la conductivitĂ© thermique, compliquant la planification spĂ©cifique Ă  un patient donnĂ©. En fournissant des outils prĂ©dictifs, les modĂšles biophysiques pourraient aider les cliniciens Ă  planifier et guider efficacement la procĂ©dure. Nous introduisons un modĂšle mathĂ©matique dĂ©taillĂ© des mĂ©canismes impliquĂ©s dans l’ARF des tumeurs du foie comme la diffusion de la chaleur et la nĂ©crose cellulaire. Il simule l’étendue de l’ablation Ă  partir d’images mĂ©dicales, d’aprĂšs lesquelles des modĂšles personnalisĂ©s du foie, des vaisseaux visibles et des tumeurs sont segmentĂ©s. Dans cette thĂšse, une nouvelle approche pour rĂ©soudre ces Ă©quations basĂ©e sur la mĂ©thode de Lattice Boltzmann est introduite. Le modĂšle est d’abord Ă©valuĂ© sur des donnĂ©es de patients qui ont subi une ARF de tumeurs du foie. Ensuite, un protocole expĂ©rimental combinant des images multi-modales, anatomiques et fonctionnelles prĂ©- et post-opĂ©ratoires, ainsi que le suivi de la tempĂ©rature et de la puissance dĂ©livrĂ©e pendant l'intervention est prĂ©sentĂ©. Il permet une validation totale du modĂšle qui considĂšre des donnĂ©es les plus complĂštes possibles. Enfin, nous estimons automatiquement des paramĂštres personnalisĂ©s pour mieux prĂ©dire l'Ă©tendu de l’ablation. Cette stratĂ©gie a Ă©tĂ© validĂ©e sur 7 ablations dans 3 cas cliniques. A partir de l'Ă©tude prĂ©clinique, la personnalisation est amĂ©liorĂ©e en comparant les simulations avec les mesures faites durant la procĂ©dure. Ces contributions ont abouti Ă  des rĂ©sultats prometteurs, et ouvrent de nouvelles perspectives pour planifier et guider l’ARF

    Real-time modelling and visualization of soft tissue thermomechanical behaviour for radiofrequency thermal ablation

    Get PDF
    A review of current literature indicates a limited knowledge and documentation of thermomechanical response of soft tissue during Minimally Invasive Surgical (MIS) hyperthermia procedures such as Radiofrequency Thermal Ablation (RFA). Furthermore, current models and simulations have not accounted for the temperature-dependence of the stress-strain behaviour of soft tissue. The only quantified data for temperature-dependent stress-strain relationships in literature is yielded from Xu and Lu (2009) and Xu, Seffen and Lu (2008a). As well as this, hardware-accelerated (by use of Graphics Processing Units (GPUs)) heat transfer simulations of RFA had not been documented prior to commencement of this project, and the first conference paper announcing this achievement was published in April of 2014 following research and implementation by NE Scientific LLC. A computational three-dimensional (3D) simulated virtual model of liver tissue is developed to establish temperature distributions resulting from single point temperature sources in emulation of the RFA heat treatment procedure. The temperature distribution in the virtual tissue domain is produced by Finite Element (FEM) spatial discretization and Finite Difference (FDM) temporal discretization of the Pennes bioheat transfer equation. The modelled temperature distribution is utilized to determine the degree of transient thermal damage to the virtual tissue based on the Arrhenius Burn Integration. Furthermore, the temperature distribution is used in conjunction with linear thermal expansion to model thermal strains and thermal stresses within the virtual tissue, resulting from the heat source. Novel work is undertaken in producing a thermal stress profile of virtual liver tissue under operational temperatures based on temperature-dependent material stress-strain. The simulation of tissue bioheat transfer and thermal damage is developed in C++ and the High-Level Shader Language (HLSL) with Microsoft’s Direct3D11 Application Programming Interface (API), where the numerical solution process is parallelized and accelerated in performance upon an NVIDIA GTX 770M GPU far beyond its performance upon a single thread/core of an Intel® Core™ i7-4700MQ Central Processing Unit (CPU). A maximum mesh resolution is determined for producing visual real-time post-processing output data based on the GPU accelerated simulation performance. A commercial FEM software package (LISA) is used for determining thermal strain and thermal stress distributions from the temperature distribution data. Examination of simulation results when comparing tissue thermomechanical response for temperature-independent and temperature-dependent stress-strain relationships indicates a dramatic difference in magnitude and distribution of the thermally-induced stresses within the soft tissue. The implications are that RFA simulations must account for this stress-strain temperature-dependence in order to produce remotely accurate stress and strain distributions (both thermomechanical and mechanical) due to the behavioural response of the collagenous biological soft tissue. Furthermore, GPU acceleration is highly recommended for RFA simulation, as the visual real-time maximum mesh resolution far surpasses that of real-time performed on a single modern CPU core
    • 

    corecore