22,594 research outputs found

    A Case for Redundant Arrays of Hybrid Disks (RAHD)

    Get PDF
    Hybrid Hard Disk Drive was originally concepted by Samsung, which incorporates a Flash memory in a magnetic disk. The combined ultra-high-density benefits of magnetic storage and the low-power and fast read access of NAND technology inspires us to construct Redundant Arrays of Hybrid Disks (RAHD) to offer a possible alternative to today’s Redundant Arrays of Independent Disks (RAIDs) and/or Massive Arrays of Idle Disks (MAIDs). We first design an internal management system (including Energy-Efficient Control) for hybrid disks. Three traces collected from real systems as well as a synthetic trace are then used to evaluate the RAHD arrays. The trace-driven experimental results show: in the high speed mode, a RAHD outplays the purely-magnetic-disk-based RAIDs by a factor of 2.4–4; in the energy-efficient mode, a RAHD4/5 can save up to 89% of energy at little performance degradationPeer reviewe

    Vectorwise: Beyond Column Stores

    Get PDF
    textabstractThis paper tells the story of Vectorwise, a high-performance analytical database system, from multiple perspectives: its history from academic project to commercial product, the evolution of its technical architecture, customer reactions to the product and its future research and development roadmap. One take-away from this story is that the novelty in Vectorwise is much more than just column-storage: it boasts many query processing innovations in its vectorized execution model, and an adaptive mixed row/column data storage model with indexing support tailored to analytical workloads. Another one is that there is a long road from research prototype to commercial product, though database research continues to achieve a strong innovative influence on product development

    Cathodochromic storage device

    Get PDF
    A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours
    corecore