6 research outputs found

    COMPUTATION ACCELERATION ON SGI RASC: FPGA BASED RECONFIGURABLE COMPUTING HARDWARE

    Get PDF
    In this paper a novel method of computation using FPGA technology is presented. In severalcases this method provides a calculations speedup with respect to the General PurposeProcessors (GPP). The main concept of this approach is based on such a design of computinghardware architecture to fit algorithm dataflow and best utilize well known computingtechniques as pipelining and parallelism. Configurable hardware is used as a implementationplatform for custom designed hardware. Paper will present implementation results ofalgorithms those are used in such areas as cryptography, data analysis and scientific computation.The other promising areas of new technology utilization will also be mentioned,bioinformatics for instance. Mentioned algorithms were designed, tested and implemented onSGI RASC platform. RASC module is a part of Cyfronet’s SGI Altix 4700 SMP system. Wewill also present RASC modern architecture. In principle it consists of FPGA chips and veryfast, 128-bit wide local memory. Design tools avaliable for designers will also be presented

    MEMORY INTERFACE SYNTHESIS FOR FPGA-BASED COMPUTING

    Get PDF
    This dissertation describes a methodology for the generation of a custom memory interface and associated direct memory access (DMA) controller for FPGA-based kernels that have a regular access pattern. The interface provides explicit support for the following features: (1) memory latency hiding, (2) static access scheduling, and (3) data reuse. The target platform is a multi-FPGA platform, the Convey HC-1, which has an advanced memory system that presents the user logic with three critical design challenges: the memory system itself does not perform caching or prefetching, memory operations are arbitrarily reordered, and the memory performance depends on the access order provided by the user logic. The objective of the interface is to reconcile the three problems described above and maximize overall interface performance. This dissertation proposes three memory access orders, explores buffering and blocking techniques, and exploits data reuse for the synthesis of custom memory interfaces for specific types of kernels. We evaluate our techniques with two types of benchmark kernels: matrix-vector multiplication and 6- and 27-point stencil operations. Experimental results show the proposed memory interface designs that combine memory latency hiding, access scheduling and data reuse achieve an overall performance speedup of 1.6 for matrix-vector multiplication, 2.2 for a 6-point stencil, and 9.5 for a 27-point stencil as compared to using a naïve memory interface

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations

    Numerical solutions of differential equations on FPGA-enhanced computers

    Get PDF
    Conventionally, to speed up scientific or engineering (S&E) computation programs on general-purpose computers, one may elect to use faster CPUs, more memory, systems with more efficient (though complicated) architecture, better software compilers, or even coding with assembly languages. With the emergence of Field Programmable Gate Array (FPGA) based Reconfigurable Computing (RC) technology, numerical scientists and engineers now have another option using FPGA devices as core components to address their computational problems. The hardware-programmable, low-cost, but powerful “FPGA-enhanced computer” has now become an attractive approach for many S&E applications. A new computer architecture model for FPGA-enhanced computer systems and its detailed hardware implementation are proposed for accelerating the solutions of computationally demanding and data intensive numerical PDE problems. New FPGAoptimized algorithms/methods for rapid executions of representative numerical methods such as Finite Difference Methods (FDM) and Finite Element Methods (FEM) are designed, analyzed, and implemented on it. Linear wave equations based on seismic data processing applications are adopted as the targeting PDE problems to demonstrate the effectiveness of this new computer model. Their sustained computational performances are compared with pure software programs operating on commodity CPUbased general-purpose computers. Quantitative analysis is performed from a hierarchical set of aspects as customized/extraordinary computer arithmetic or function units, compact but flexible system architecture and memory hierarchy, and hardwareoptimized numerical algorithms or methods that may be inappropriate for conventional general-purpose computers. The preferable property of in-system hardware reconfigurability of the new system is emphasized aiming at effectively accelerating the execution of complex multi-stage numerical applications. Methodologies for accelerating the targeting PDE problems as well as other numerical PDE problems, such as heat equations and Laplace equations utilizing programmable hardware resources are concluded, which imply the broad usage of the proposed FPGA-enhanced computers

    New Technologies in the Oil and Gas Industry

    Get PDF
    Oil and gas are the most important non-renewable sources of energy. Exploring, producing and managing these resources in compliance with HSE standards are challenging tasks. New technologies, workflows and procedures have to be implemented.This book deals with some of these themes and describes some of the advanced technologies related to the oil and gas industry from HSE to field management issues. Some new technologies for geo-modeling, transient well testing and digital rock physics are also introduced. There are many more technical topics to be addressed in future books. This book is aimed at researchers, petroleum engineers, geoscientists and people working within the petroleum industry
    corecore