2,539 research outputs found

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Structure optimisation of input layer for feed-forward NARX neural network

    Get PDF
    This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. Applications of vehicle handling and ride model identification are presented in this paper to demonstrate the optimization technique. The optimal input layer structure and the optimal number of neurons for the NN models are investigated and the results show that the optimised NN model requires significantly less coefficients and training time while maintains high simulation accuracy compared with that of the unoptimised model

    Efficient training of RBF neural networks for pattern recognition.

    Get PDF
    The problem of training a radial basis function (RBF) neural network for distinguishing two disjoint sets in Rn is considered. The network parameters can be determined by minimizing an error function that measures the degree of success in the recognition of a given number of training patterns. In this paper, taking into account the specific feature of classification problems, where the goal is to obtain that the network outputs take values above or below a fixed threshold, we propose an approach alternative to the classical one that makes us of the least-squares error function. In particular, the problem is formulated in terms of a system of nonlinear inequalities, and a suitable error function, which depends only on the violated inequalities, is defined. Then, a training algorithm based on this formulation is presented. Finally, the results obtained by applying the algorithm to two test problems are compared with those derived by adopting the commonly used least-squares error function. The results show the effectiveness of the proposed approach in RBF network training for pattern recognition, mainly in terms of computational time saving
    • …
    corecore