
1

Abstract—This paper presents an optimization method for reducing the number of input channels and the

complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN

model. By utilizing the correlation analysis method, the most significant regressors are selected to form the

input layer of the NN structure. Applications of vehicle handling and ride model identification are presented in

this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal

number of neurons for the NN models are investigated. The results show that the developed NN model requires

significantly less coefficients and training time while maintains high simulation accuracy compared with that of

the unoptimised model.

Keywords: optimisation, correlation analysis, NARX, neural network, F-ratio, MSE, Levenberg-Marquardt.

NOMENCLATURE

Symbol Quantity

Structure Selection of Input Layer

𝒚𝒚 original measured output

𝑦𝑦� mean value of 𝒚𝒚

𝒛𝒛𝑖𝑖
dependent output- Modified output calculated at
the beginning of the ith iteration

𝑟𝑟𝑗𝑗𝑗𝑗 correlation factor between jth regressor and
dependent output z

𝒙𝒙𝒋𝒋(𝒊𝒊) jth regressor vector at the beginning of ith iteration

𝑥̅𝑥𝑗𝑗 mean value of jth regressor vector

𝑆𝑆𝑗𝑗𝑗𝑗 variance of the jth regressor

𝑆𝑆𝑧𝑧𝑧𝑧 variance of the dependent output 𝒛𝒛𝑖𝑖

𝑿𝑿𝑖𝑖
matrix containing the selected regressors of the
input layer structure at the begining of the ith
iteration

𝑆𝑆𝑆𝑆𝑇𝑇 total sum of the squares

𝜽𝜽�𝒊𝒊 least squares estimator for the ith iteration

Zongyan Li, Loughborough University

Matt Best, Loughborough University

Structure Optimisation of Input Layer for
Feed-forward NARX Neural Network

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288373215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

𝜽𝜽�𝒎𝒎+𝒋𝒋
least squares estimator when the jth regressor is
added to the structure already containing m
regressors

𝜽𝜽�𝒑𝒑−𝒋𝒋
least squares estimator when the jth regressor is
removed from the structure already containing p
regressors

𝑠𝑠2 residual sum of squares based on 𝜽𝜽�𝒎𝒎+𝒋𝒋 or 𝜽𝜽�𝒑𝒑−𝒋𝒋

𝜷𝜷�𝒋𝒋(𝒊𝒊)
least squares estimator for the jth candidate
regressor for the ith iteration

𝑆𝑆𝑆𝑆𝑅𝑅 regression sum of squares

𝑆𝑆𝑆𝑆𝐸𝐸 residue sum of squares

N number of sample points

 n Index of the input and output vector

Training of Neural Networks

𝐿𝐿 sum of squares of the errors

𝜶𝜶𝑖𝑖
weights of the linear output layer corresponding to
the ith neuron

𝒘𝒘𝑖𝑖𝑖𝑖 weights of the nonlinear (log-sigmoid) hidden layer
corresponding to the kth input of the ith neuron

𝒃𝒃𝑖𝑖𝑖𝑖 bias of the nonlinear (log-sigmoid) hidden layer
corresponding to the kth input of the ith neuron

𝒃𝒃0 bias of the linear output layer corresponding to the
output

𝒙𝒙𝑘𝑘 kth input vector

𝑺𝑺 output of the nonlinear hidden layer

𝐽𝐽𝑖𝑖𝑖𝑖 weights in the ith row of the NN Jacobian matrix

𝐽𝐽𝑖𝑖𝑖𝑖 wias in the ith row of the NN Jacobian matrix

𝜽𝜽 vector of coefficients including all weights and
bias of the neural network

𝜇𝜇 damping factor of Levenberg-Marquardt algorithm

I. INTRODUCTION

HIS paper is motivated by work on developing reduced order models for vehicle

dynamics using system identification techniques. The idea of the artificial neural

networks (ANN), often shortened as neural network, originated from a biological domain.

The neural network is a computing system made of simple but highly interconnected

elements which process information by their dynamic state response to external inputs.

Neural networks have been successfully applied for capturing associations or discovering

T

3

regularities within a set of patterns where the volume, number of variables or diversity of the

data is very great (Susitra and Paramasivam, 2014). They also work well in revealing

interrelationships which are vaguely understood or difficult to describe adequately with

conventional approaches.

Feedforward dynamic NARX (Nonlinear AutoRegressive eXogenous model) models have

proven very successful in various engineering applications. In a NARX feedforward neural

network, the information moves in only one direction. It enters the network from the input

nodes, travels through the hidden layers and produces an overall output. The NARX

representation for a general discrete nonlinear system is

𝑦𝑦(𝑡𝑡) = 𝑓𝑓𝑠𝑠 �𝑦𝑦(𝑡𝑡 − 1), … ,𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�,𝑢𝑢(𝑡𝑡),𝑢𝑢(𝑡𝑡 − 1), …𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢)�+ 𝑒𝑒(𝑡𝑡)

(1)

where the time-delayed terms model the ‘memory’ of the dynamic system. 𝑓𝑓𝑠𝑠(∙) is a nonlinear

surrogate function of the specific system and e(t) is the unexplained noise. A vital task is to

find the required number of lagged observations 𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑢𝑢 in order to generate the auto-

regressive structure for the model identification in time series. Many researchers made

efforts to optimise the structure of a dynamic neural network in the time-series domain. The

fact that any neural network representation for a system can have various solution of weights

can cause difficulty in deciding the number of neurons and the number of layers (Montana

and Davis, 1989). An auto-regressive is described with integrated moving average (ARIMA)

modelling method and improved the accuracy of prediction (Khashei and Bijari, 2010). These

challenges motivated researchers to explore the optimised structure of the NN network and

applied them to various engineering project.

Various optimisation approaches exist in order to reduce the complexity of the ANN and

offer hints for choosing appropriate values for internal coefficients. Performance of the model

is usually assessed along with the optimisation process by evaluating the gradient between

4

the simulation output error and the change of the weighting coefficients in the nodes of the

NN network (Benardos, and Vosniakos, 2002; Ma and Khorasani, 2003). Taguchi’s design of

experiments, which aims to find the cause and effect between input and output prior to model

development, also provides a systematic way to reduce complexity (Ross, 1996). On the

other hand, the neurons can also be manipulated by a sequential algorithm starting from an

initial infrastructure; the performance of the ANN is assessed by a previously specified

criterion and neurons are only added when convergence takes too long or the mean squared

error is larger than a pre-defined threshold (Balkin and Ord, 2000; Islam and Murase, 2001;

Jiang and Wah, 2003). Multi-object genetic algorithm(GA) can be utilized where the impact

of the number of layers and neurons, the activation function and training algorithm on the

network performance are taken into the calculation of objective function (Benardos and

Vosniakos, 2007; Whitley et al., 1990). The offspring ANN models are generated from the

initial network structure iteratively until the one with the lowest objective value is found.

However, the disadvantage is that most of these methods are computationally expensive and

could be difficult to implement for certain problems (Zhang et al., 1998), therefore, it is

sensible to consider optimisation techniques focusing on some of the key aspects such as the

input layer structure.

This paper aims to investigate the correlation analysis method of input structure

optimisation when developing an ANN model and reduce the order of the dynamic ANN by

using selected terms in the input layer. In the literature, structure detection method using

orthogonal least squares (Guo et al., 2015) is also capable of producing good nonlinear terms

and reducing the order of the input layer. Statistical algorithm based on linear and nonlinear

least squares methods (Hera and Morales, 2014) was used to optimise model-based design as

well. The correlation analysis method of feed-forward NN model reduces the number of

coefficients in the NN model and can be widely used in various area of application. For

5

example, a landslide-related database was analysed and a feed-forward neural network model

can then be developed to provide risk assessment (Pradhan et al., 2010). A three-layer feed-

forward neural network was used to predict wind speed (Mohandes et al., 1998). The indoor

air contaminants were modelled using a multi-layer neural network (Zhang and Tian, 2013).

These applications of dynamic feedforward NN network applied a full series of linear terms

in the input layer and some of the linear terms may not be relevant with the model outputs.

Subsequently, a large number of terms in the input layer unnecessarily increase the number of

coefficients for the training process. Rather than adopting a long series of the delayed linear

terms of inputs and output in the input layer, this approach only selects the most influential

regressors within a possible searching range, thus dramatically improves the efficiency of the

training process. Optimised neural network models for vehicle ride and handling dynamics

are developed in order to validate these techniques.

II. INPUT LAYER STRUCTURE OPTIMISATION

 In a dynamic system, the I/O of the system for the previous time affects the system output

of the current time, which indicates that the dynamic system has ‘memory’. A NN model is

required to identify to reveal the nonlinear relations between the inputs and outputs of the

system and accurately replicate the system dynamics. The input signal values are usually

normalised into [-1, 1] to facilitate the use of log-sigmoid weighting function.

 The inputs for a dynamic neural network are usually formed by a full series of linear time-

delayed input terms in ascending order such as u(t-1), u(t-2), u(t-3)…u(t-na), y(t-1), y(t-2), y(t-

3)…,y(t-nb) according to the designed maximum order of the NN model. The maximum order

of the system is a guess as the start of the process or based on engineering knowledge. At the

beginning of the optimization process, the order numbers ‘na’ and ‘nb’ are defined as the

maximum order the target system could involve to form the pool of all possible candidate

terms. The linear, quadratic and cubic terms are the initial range satisfying the complexity of

6

system and this range can be extended if necessary. The higher order terms can be generated

based on the original linear terms. Accordingly, a regression pool can be defined as shown in

Fig.1, compiling of the candidate regressors which possess significant dynamic relations with

the output. An efficient NN model can then be determined by selecting the most suitable of

these regressors into the input layer.

The standard method needs a large number of coefficients and thus increasing the

computational time of the training process, but saves a lot of time in designing the input layer

because the function is already embedded in the Matlab NN toolbox library. However, the

latter method offers optimised input terms which carry the most significant system dynamics,

thus dramatically reducing network complexity. The correlation analysis method is proposed

to select the input regressors for the input layer with the following steps as shown in Fig.2:

A. Correlation analysis

Firstly, a model regressor pool including all possible candidate regressors is established.

For the present technique, all linear, quadratic and cubic regressors with pre-defined

maximum time delay forms the overall regressor pool. At the beginning of the ith iteration,

the correlation factor between the jth regressor 𝒙𝒙𝒋𝒋(𝒊𝒊) and the dependent output 𝒛𝒛𝒊𝒊 can be

represented as follows:

𝑟𝑟𝑗𝑗𝑗𝑗 = �
�𝒙𝒙𝒋𝒋(𝒊𝒊)(𝑛𝑛) − 𝒙𝒙�𝑗𝑗(𝑖𝑖)�[𝒛𝒛𝒊𝒊(𝑛𝑛) − 𝒛𝒛�𝑖𝑖]

�𝑆𝑆𝑗𝑗𝑗𝑗𝑆𝑆𝑧𝑧𝑧𝑧

𝑁𝑁

𝑛𝑛=1

, 𝑗𝑗 = 1,2,3, … ,−1 < 𝑟𝑟𝑗𝑗𝑗𝑗 < 1 (2)

where

𝑥̅𝑥𝑗𝑗 = 1
𝑁𝑁
∑ 𝒙𝒙𝒋𝒋(𝒊𝒊)(𝑛𝑛)𝑁𝑁
𝑛𝑛=1 (3)

𝑆𝑆𝑗𝑗𝑗𝑗 = ∑ [𝒙𝒙𝒋𝒋(𝒊𝒊)(𝑛𝑛) − 𝒙𝒙�𝑗𝑗(𝑖𝑖)]2𝑁𝑁
𝑛𝑛=1 (4)

𝑆𝑆𝑧𝑧𝑧𝑧 = ∑ [𝒛𝒛𝒊𝒊(𝑛𝑛) − 𝒛𝒛�𝑖𝑖]2𝑁𝑁
𝑛𝑛=1 (5)

7

where 𝒛𝒛𝒊𝒊 is defined as the dependent output array which is developed at the beginning of ith

iteration and 𝒙𝒙�𝑗𝑗(𝑖𝑖) is the mean value of the jth regressor vector. Specifically, 𝒛𝒛1 is the initial

dependent output variable and is equivalent to the original output y. In this step, the

correlation factors between all the candidate regressors and the dependent output 𝒛𝒛𝒊𝒊 are

determined for subsequent analysis. The regressor inserted into the model should be the one

with the highest correlation factor. Initially, the regressor matrix 𝑿𝑿1 only contains a column

of 1s as offset terms and we define 𝒙𝒙𝑗𝑗(1) as the vector of original regressors. The X matrix is

updated as:

𝑿𝑿1 = �

1
1
⋮
1

�

𝑛𝑛×1

 (6)

𝑿𝑿𝑖𝑖+1 = �𝑿𝑿𝑖𝑖 ,𝒙𝒙𝑗𝑗(1)� (7)

The coefficients for the regressors are defined as vector 𝜽𝜽. Therefore, only one regressor

with the highest correlation factor is added into the model in each iteration. With the default

offset term in the model, we are able to establish the following two hypotheses:

𝐻𝐻0: 𝜃𝜃1 = 𝜃𝜃2 = ⋯ = 𝜃𝜃𝑛𝑛 = 0 (8)

𝐻𝐻1:𝜃𝜃𝑗𝑗 ≠ 0 (9)

where 𝐻𝐻0 and 𝐻𝐻1 are the null hypothesis and alternative hypothesis respectively. The

alternative hypothesis indicates that at least one jth regressor is inserted into the input layer.

In order to decide which hypothesis is accepted, there are three statistical quantities which

should be determined:

𝑆𝑆𝑆𝑆𝑇𝑇 = ∑ [𝒚𝒚(𝑛𝑛) − 𝑦𝑦�]2𝑁𝑁
𝑛𝑛=1 = 𝒚𝒚𝑇𝑇𝒚𝒚 − 𝑁𝑁𝑦𝑦�2 (10)

8

𝑆𝑆𝑆𝑆𝑅𝑅 = ∑ [𝒚𝒚�(𝑛𝑛) − 𝑦𝑦�]2𝑁𝑁
𝑛𝑛=1 (11)

𝑆𝑆𝑆𝑆𝐸𝐸 = ∑ [𝒚𝒚(𝑛𝑛) − 𝒚𝒚�(𝑛𝑛)]2𝑁𝑁
𝑛𝑛=1 = 𝒚𝒚𝑇𝑇𝒚𝒚 − 𝜽𝜽�𝑖𝑖𝑿𝑿𝒊𝒊𝑇𝑇𝒚𝒚 (12)

where N is the number of sample points of the regressor vector and 𝒚𝒚�(𝑛𝑛) is the estimated

output computed by 𝒚𝒚� = 𝜽𝜽�𝑖𝑖𝑿𝑿𝒊𝒊𝑇𝑇 from the model. 𝑦𝑦� is the mean value of the original measured

output variable. 𝑆𝑆𝑆𝑆𝑇𝑇 is the total sum of the squares, 𝑆𝑆𝑆𝑆𝑅𝑅 represents the regression sum of

squares and 𝑆𝑆𝑆𝑆𝐸𝐸 is the residue sum of squares. The three assessment terms are then related as:

𝑆𝑆𝑆𝑆𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑅𝑅 + 𝑆𝑆𝑆𝑆𝐸𝐸 (13)

If we substitute (10)(11)(12) into (13), then the following relation is derived:

𝑆𝑆𝑆𝑆𝑅𝑅 = 𝜽𝜽�𝑖𝑖𝑿𝑿𝒊𝒊𝑇𝑇𝒚𝒚 − 𝑁𝑁𝑦𝑦�2 (14)

where

𝜽𝜽�𝑖𝑖 = (𝑿𝑿𝒊𝒊𝑇𝑇𝑿𝑿𝒊𝒊)−1𝑿𝑿𝒊𝒊𝑇𝑇𝒚𝒚 (15)

Subsequently, to assess the regressors, two statistical processes are considered in advance

of adding each regressor into the input layer:

B. Forward Selection

The partial F-ratio decides the significance of the regressor. The regressor with the highest

correlation factor will have the highest partial F-ratio. In the situation that the model already

contains m regressors, the jth regressor can be brought into the input layer if the partial F-

ratio

𝐹𝐹 =
𝑆𝑆𝑆𝑆𝑅𝑅(𝜃𝜃�𝑗𝑗|𝜽𝜽�𝑚𝑚)

𝑠𝑠2
=
𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒎𝒎+𝒋𝒋� − 𝑆𝑆𝑆𝑆𝑅𝑅(𝜽𝜽�𝒎𝒎)

𝑠𝑠2
> 𝐹𝐹𝑖𝑖𝑖𝑖 (16)

where

9

 𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒎𝒎+𝒋𝒋� = 𝜽𝜽�𝒎𝒎+𝒋𝒋𝑿𝑿𝑚𝑚+𝑗𝑗
𝑇𝑇 𝒚𝒚 − 𝑁𝑁𝑦𝑦�2 (17)

𝑠𝑠2 =
1

𝑁𝑁 − (𝑚𝑚 + 1) ∗ �𝒚𝒚 − 𝜽𝜽�𝒎𝒎+𝒋𝒋𝑿𝑿𝑚𝑚+𝑗𝑗
𝑇𝑇 �

𝑇𝑇
�𝒚𝒚 − 𝜽𝜽�𝒎𝒎+𝒋𝒋𝑿𝑿𝑚𝑚+𝑗𝑗

𝑇𝑇 � (18)

and 𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒎𝒎+𝒋𝒋� is the regression sum of squares obtained by adding the jth regressor to

the original m terms. The index m+ j generally means the jth regressor is added to the

original m terms in the input layer. 𝑠𝑠2 is the residual sum of squares after the jth regressor is

added into the structure.

C. Backward Elimination

The regressors already entered in the input layer are reassessed by means of their partial F-

ratios in each iteration, since a regressor added in the input layer at the early stage may

become redundant when it involves some relationship with the regressors added subsequently.

With the input design that already involves p regressors, the jth regressor with the lowest

partial F-ratio is eliminated if

 𝐹𝐹 = min
𝑗𝑗

𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒑𝒑� − 𝑆𝑆𝑆𝑆𝑅𝑅(𝜽𝜽�𝒑𝒑−𝒋𝒋)
𝑠𝑠2

< 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 (19)

 where

𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒑𝒑−𝒋𝒋� = 𝜽𝜽�𝒑𝒑−𝒋𝒋𝑿𝑿𝑝𝑝−𝑗𝑗𝑇𝑇 𝒚𝒚 − 𝑁𝑁𝑦𝑦�2 (20)

and 𝑆𝑆𝑆𝑆𝑅𝑅�𝜽𝜽�𝒑𝒑−𝒋𝒋� is the regression sum of squares obtained by removing the jth regressor

from the p terms which are already in the model. The index p−j generally represents the jth

regressor being removed from the original input layer containing p terms.

D. Iterative Structure update

10

Finally, the structure of the input layer is represented as the regressors included in the X

matrix. In order to remove the influence of the selected regressors, the dependent output

variable 𝒛𝒛𝑖𝑖 and candidate regressors which are not selected are modified according to the

regressors already in the input layer design, i.e., at the end of the ith iteration, the dependent

variable is altered as

𝒛𝒛𝑖𝑖+1 = 𝒚𝒚 − 𝑿𝑿𝒊𝒊𝜽𝜽�𝒊𝒊 (21)

and all the remaining regressors modified by removing the least squares components

formed by already selected terms and the next iteration becomes

𝒙𝒙𝒋𝒋(𝒊𝒊+𝟏𝟏) = 𝒙𝒙𝒋𝒋(𝒊𝒊) − 𝑿𝑿𝒊𝒊𝜷𝜷�𝒋𝒋(𝒊𝒊), 𝑗𝑗 = 1,2,3 … (22)

where

𝜷𝜷�𝒋𝒋(𝒊𝒊) = (𝑿𝑿𝒊𝒊𝑻𝑻𝑿𝑿𝒊𝒊)−𝟏𝟏𝑿𝑿𝒊𝒊𝒙𝒙𝒋𝒋(𝒊𝒊), 𝑗𝑗 = 1,2,3 … (23)

i is the iteration number and j is the regressor index. At the end of this iteration, i is

increased by 1 for the next iteration.

The iterations from step A to step D continue until no other candidate regressor in the

regressor pool possesses a partial F-ratio higher than 𝐹𝐹𝑖𝑖𝑖𝑖 and no regressor in the model has a

partial F-ratio less then 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜, where 𝐹𝐹𝑖𝑖𝑖𝑖 and 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 are the preselected stopping criteria for the

iteration. At 95% confidence level, we use the criterion F(0.05, 1, N −m) ≈ 4, where the

sample number N is much larger than number of the identified coefficients m. In other words,

if the selected regressor possesses a partial F-ratio larger than 4, there is at least 95% chance

that we made the correct decision to add the regressor into the input layer. Usually we

find 𝐹𝐹𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜, however 𝐹𝐹𝑖𝑖𝑖𝑖 > 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 indicates it is harder to accept a regressor than delete

one. As a result, all the significant terms in the regressor pool are found and inserted into the

11

input layer through the iteration process. The selection process stops when the number of

qualified regressors has reached the pre-defined maximum in the input layer or there is no

further qualified regressors to be selected.

III. SETUP OF A TWO LAYER NETWORK

The two layer neural network structure comprises a hidden layer and an output layer. In

each neuron of the hidden layer, a threshold function is defined and the neuron is ‘fired’

when the weighted sum of inputs reaches a particular threshold. In the example, the log-

sigmoid function which generates a threshold at 0 and +1 is used. For modelling nonlinear

problems, at least one hidden layer is used to recognise the relationship represented by

continuous function; and the number of neurons needed in the hidden layer is one of the key

parameters in defining the complexity of the NN model. By building NN models with

increasing number of neurons and comparing validation results, the optimal number of

neurons can be determined. Although a computationally expensive process, the searching can

be done effectively and automatically. The final delivered neural network model does not

need to run the training process again and can be directly used on validation data. In Fig.3, in

the input layer, x(t) with the number ‘4’ underneath indicates that 4 input channels are formed

by the input regressors including selected linear and nonlinear terms. The output signal y(t)

goes through a delay circle marked ‘1’ in the center and becomes the one-step ahead output

y(t-1). Apart from y(t-1), the rest of input channels are within the block of x(t). For a two-

layer MISO dynamic neural network using log-sigmoid weighting function, the network can

be analytically defined as

𝑦𝑦(𝑡𝑡) = ∑ 𝜶𝜶𝑖𝑖 ∙𝑚𝑚
𝑖𝑖=1 𝑓𝑓ℎ(∑ 𝒘𝒘𝑖𝑖𝑖𝑖𝒙𝒙𝑘𝑘(𝑡𝑡) + 𝒃𝒃𝑖𝑖𝑖𝑖𝑛𝑛

𝑘𝑘=1) + 𝒃𝒃0 (24)

Where m is the number of neurons in the hidden layer, n is the number of input nodes, 𝑓𝑓ℎ is

the weighting function used in the hidden layer, 𝒘𝒘𝑖𝑖𝑖𝑖 and 𝒃𝒃𝑖𝑖𝑖𝑖 the weight and bias

12

corresponding to the kth input in the ith neuron. 𝜶𝜶𝑖𝑖 and 𝒃𝒃0 are the weights and bias in the

output layer.

Hence, the weighted sum of the weighted inputs within the hidden layer can be represented

as:

𝑺𝑺 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝒙𝒙𝑘𝑘(𝑡𝑡) + 𝒃𝒃𝑖𝑖𝑖𝑖𝑛𝑛
𝑘𝑘=1 (25)

= �

𝑤𝑤11 𝑤𝑤12 𝑤𝑤13 ⋯ 𝑤𝑤1𝑛𝑛
𝑤𝑤21 𝑤𝑤22 𝑤𝑤23 ⋯ 𝑤𝑤2𝑛𝑛
⋮ ⋮ ⋮ ⋯ ⋮

𝑤𝑤𝑚𝑚1 𝑤𝑤𝑚𝑚2 𝑤𝑤𝑚𝑚3 ⋯ 𝑤𝑤𝑚𝑚𝑚𝑚

�

𝑚𝑚×𝑛𝑛 ⎣
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮
𝑥𝑥𝑛𝑛⎦
⎥
⎥
⎥
⎤

+ �

𝑏𝑏11
𝑏𝑏12
⋮

𝑏𝑏1𝑚𝑚

�

= �

𝑏𝑏11 + 𝑤𝑤11𝑥𝑥1 + 𝑤𝑤12𝑥𝑥2 + ⋯+ 𝑤𝑤1𝑛𝑛𝑥𝑥𝑛𝑛
𝑏𝑏12 + 𝑤𝑤21𝑥𝑥1 + 𝑤𝑤22𝑥𝑥2 + ⋯+ 𝑤𝑤2𝑛𝑛𝑥𝑥𝑛𝑛

⋮
𝑏𝑏1𝑚𝑚 + 𝑤𝑤𝑚𝑚1𝑥𝑥1 + 𝑤𝑤𝑚𝑚2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥𝑛𝑛

� (26)

Then this weighted sum of the inputs 𝑺𝑺 is applied to the log-sigmoid weighting function

which determines which neurons are excited by calculating

ℎ = 𝑓𝑓ℎ(𝑺𝑺) = 1
1+exp(𝑺𝑺)

, 1 > ℎ > 0 (27)

the first derivative of the log–sigmoid function h with respect to the weights and bias used in

the training algorithm is

𝜕𝜕ℎ
𝜕𝜕𝑤𝑤𝒊𝒊𝒊𝒊

= − exp (𝑺𝑺)
[1+exp(𝑺𝑺)]2

∙ 𝒙𝒙𝑘𝑘 (28)

𝜕𝜕ℎ
𝜕𝜕𝑏𝑏𝒊𝒊𝒊𝒊

= − exp (𝑺𝑺)
[1+exp(𝑺𝑺)]2

 (29)

 The output layer then uses the linear transfer function to filter the weighted sum of output

from the hidden layer. The output from each neuron of the hidden layer is linearly gained and

biased without changing the nonlinear dynamics.

13

For the training process, at least two sets of data are commonly used: training data for

establishing the network and test data for validation. The weights are initially assigned

randomly and the training process is supervised by the measured output of the training data.

In order to determine coefficients 𝜽𝜽 = [𝒘𝒘,𝒃𝒃] in the neural network, the Levenberg-Marquardt

(LM) algorithm (Marquardt, 1963; Hagan and Menhaj, 1994), also known as Nonlinear Least

Squares Minimisation, is used. The problem for the application of LM algorithm is defined as

optimising 𝜽𝜽 , so that the sum of squares of the errors

𝐿𝐿(𝜽𝜽) = 1
2
∑ [(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜽𝜽)]2𝑁𝑁
𝑖𝑖=1 = 1

2
𝒆𝒆𝑇𝑇𝒆𝒆 (30)

is minimised. N is the number of input and output samples. The index 𝑖𝑖 represents the sample

number for a pair of input and output. 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜃𝜃) is a non-linear function which estimates the

output, in this case, the neural network model.

Therefore, the following equation holds

𝐿𝐿(𝜽𝜽 + 𝜹𝜹) ≈ 1
2
∑ (𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜽𝜽) − 𝐽𝐽𝑖𝑖𝜹𝜹)2𝑁𝑁
𝑖𝑖=1 (31)

= 1
2
�|𝒚𝒚 − 𝑓𝑓(𝜽𝜽) − 𝑱𝑱𝑱𝑱|�

2
 (32)

where 𝑱𝑱 is the Jacobian matrix which contains the first derivatives of the network errors with

respect to the weights and bias. 𝐽𝐽𝑖𝑖 is the ith row of 𝑱𝑱, 𝑓𝑓(𝑥𝑥𝑖𝑖,𝜽𝜽) is the ith row of 𝑓𝑓(𝜽𝜽) and 𝑦𝑦𝑖𝑖 is

the ith row of 𝒚𝒚.

Taking the derivative of equation (32) and setting the result to zero leads to:

(𝑱𝑱𝑻𝑻𝑱𝑱)𝜹𝜹 = 𝑱𝑱𝑻𝑻[𝒚𝒚 − 𝑓𝑓(𝜽𝜽)] (33)

Levenberg modifies an adaptive value 𝜇𝜇 which creates a ‘damped’ version:

(𝑱𝑱𝑻𝑻𝑱𝑱 + 𝜇𝜇𝑰𝑰)𝜹𝜹 = 𝑱𝑱𝑻𝑻[𝒚𝒚 − 𝑓𝑓(𝜽𝜽)] (34)

14

The damping factor 𝜇𝜇 is adjusted in each iteration according to the convergence speed. A

smaller 𝜇𝜇 can be used when the convergence speed is rapid.

Therefore, the increment of coefficient 𝜹𝜹 can be determined as

𝜹𝜹 = 𝜽𝜽𝒌𝒌+𝟏𝟏 − 𝜽𝜽𝒌𝒌 = (𝑱𝑱𝑻𝑻𝑱𝑱 + 𝜇𝜇𝑰𝑰)−𝟏𝟏𝑱𝑱𝑻𝑻[𝒚𝒚 − 𝑓𝑓(𝜽𝜽𝒌𝒌)] (35)

The LM backpropagation is achieved by performing the gradient descent within the

solution’s vector space towards a ‘global minimum’. The LM algorithm appears to be the

fastest method for training moderate-sized feedforward neural networks (up to several

hundred weights) (Whitley et al., 1990). Moreover, this method uses the Jacobian for

calculations, which assumes that performance is measured by a mean or sum of squared

errors.

IV. APPLICATION IN DYNAMIC VEHICLE MODELING

A Jaguar Land Rover SUV is used to test the identification of a reduced order dynamic

model. The dynamic information of the vehicle is generated by a high-fidelity model in

CarMaker.

A. Ride model
As illustrated in Fig. 4, a virtual vehicle ride test is conducted on a randomly generated digital

road and three segments of ID data are collected when the SUV are operating at 10m/s, 20m/s

and 30m/s respectively. Validation data is generated based on running the vehicle on a real

world measured road (a UK’s B class country road). The test data are collected at the

sampling rate of 500Hz and then down-sampled into 100Hz.

A two layer dynamic neural network structure is established between the road input and

vehicle dynamic response represented by various dynamic outputs (pitch angle as an

example). The original linear inputs are shown in Table. I, and the identified neural network

15

model with various reduced input sets illustrate the optimization process shown in Table. II.

The regressor is selected by assessing its correlation and partial F-ratio. The results showed

that the regressor with the highest correlation would be found at each iteration and every

newly added regressor can rebalance the partial F-ratio for all the selected regressors in the

input layer.

The results given in Table. III reveal that the training time is reduced significantly because of

reduced number of weights when the neuron number is optimized. In order to assess and

compare quality, the model performance is measured by MSE (Mean Squared Error) and R2

where R2=100 corresponds to 100% fitness:

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑒𝑒𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (36)

𝑅𝑅2 =
𝑒𝑒𝑇𝑇𝑒𝑒
𝑌𝑌𝑇𝑇𝑌𝑌

× 100 (37)

Validation results show that the optimized NN model is able to achieve a slightly higher

value of R2 while keeping a lower number of weights. Fig.5 demonstrates validation result of

pitch angle and shows the effectiveness of the optimized neural network. Based on the

optimized input layer structure including five selected terms shown in Table II, we continue

to search for the optimal number of neurons which can produce the model with best quality

whereas this value is kept as small as possible in order to reduce the possibility of over-fit.

Fig.6 reveals the variation of R2 in validation result along with increase of neuron number

and this illustrate that model quality would not necessarily keep improving due to the side

effect of over-fitting which decreases model accuracy. Therefore an optimal number of

neurons can be achieved by searching for the best compromise between model complexity

and accuracy. For this specific problem, the optimal neuron number is chosen as 2.

16

B. Handling model

By using the same 100Hz sampling rate as that of the ride model test, the second application

aims to demonstrate the effectiveness of NN for modeling the vehicle handling dynamics. As

shown in Fig.7, the steer input profile contains variations in different frequencies in order to

excite a wide spectrum of the vehicle dynamic response. Meanwhile, the vehicle is

accelerated and decelerated within different segments of the test in order to generate more

nonlinear behavior of the vehicle handling system. Therefore the handling model is designed

as a MIMO model with 2 inputs (steer angle, forward velocity) and 6 outputs (lateral

acceleration, yaw rate, roll angle, lateral velocity, roll velocity, roll acceleration).

Fig.8 shows the comparison between measured lateral acceleration and the simulated one

from the handling model. It demonstrates that the nonlinear behavior of the vehicle handling

system can be accurately predicted by NN network. Six relevant dynamic outputs have been

modelled using all linear regressors and selected regressors for the input layer separately. The

details of the best model accuracy and training time are shown in Table IV. It can be seen that

the training time for the NN with selected regressors in the input layer is halved compared

with the one with all linear regressors in the input layer. The corresponding coefficients are

shown in Table V and Table VI.

V. CONCLUSION

In this paper, the training and input layer optimization technique for a forward NARX NN

network has been described. The input layer structure of the NARX neural network is formed

from regressors selected by the correlation analysis method. Partial F-ratio analysis has also

been applied as a key feature to determine the structure of the input layer structure. The

applications of vehicle ride and handling model identification have been presented and

minimal neuron number and input layer structure are determined for the developed neural

network. The NARX NN network was trained by Levenberg-Marquardt algorithm using

17

selected regressors in the input layer. It can be concluded that the input layer optimization

process has successfully reduced the computational time for neural network training whereas

the model validation accuracy is maintained to a high standard.

ACKNOWLEGEMENTS

This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as

part of the jointly funded Programme for Simulation Innovation.

REFERENCES

Balkin S. D. and Ord J. K. (2000) ‘Automatic neural network modeling for univariate time
 series’. International Journal of Forecasting, Vol.16, pp. 509–515
Benardos P. G. and Vosniakos G. C. (2002) ‘Prediction of surface roughness in CNC face
 milling using neural networks and Taguchi’s design of experiments’. Robotics and
 Computer Integrated Manufacturing, Vol. 18, pp. 43–354.
Benardos P. G. and Vosniakos G. C. (2007) ‘Optimizing feed-forward artificial neural
 network architecture’. Engineering Applications of Artificial Intelligence, Vol. 20, pp.
 365–382.
Guo, Y., Guo, L., Billings S.A. and Wei H.L. (2015) ‘Identification of nonlinear systems with
 non-persistent excitation using an iterative forward orthogonal least squares regression
 algorithm’. Int. J. of Modelling, Identification and Control, 2015, Vol.23, No.1,
 pp.1 – 7
Hagan M. T. and Menhaj M. (1994) ‘Training feed-forward networks with the Marquardt
 algorithm’, IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 989–993.
Hera P.L. and Morales D.O. (2014) ‘Non-linear dynamics modelling description for
 simulating the behaviour of forestry cranes’, Int. J. of Modelling, Identification and
 Control, 2014, Vol.21, No.2, pp.125–138.
Islam M. M. and Murase K. (2001) ‘A new algorithm to design compact two hidden layer
 artificial neural networks’. Neural Networks, Vol. 14, pp. 1265–1278.
Jiang X. and Wah A.H.K.S. (2003), ‘Constructing and training feed-forward neural networks
 for pattern classification’. Pattern Recognition Vol. 36, pp. 853–867.
Khashei M. and Bijari M. (2010) ‘An artificial neural network (p, d, q) model for timeseries
 forecasting’. Expert Systems with Applications Vol. 37, pp. 479–489
Ma L. and Khorasani K. (2003) ‘A new strategy for adaptively constructing multilayer feed-
 forward neural networks’. Neurocomputing, Vol.51, pp. 361–385.
Marquardt D. (1963), ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters’.
 SIAM Journal on Applied Mathematics, Vol. 11, No. 2, pp. 431–441.
Montana D. and Davis L. (1989) ‘Training feedforward neural networks using genetic
 algorithms’. Proc. International Joint Conf. Artificial Intelligence, Vol.1, pp.762-767.
Mohandes M.A., Rehman S. and Halawani T.O. (1998) ‘A neural networks approach for
 wind speed prediction’. Renewable Energy, Vol. 13, No.3, pp.345-354
Pradhan B. and Lee S. and Buchroithner M. F. (2010) ‘A GIS-based back-propagation neural

18

 network model and its cross-application and validation for landslide susceptibility
 analyses’. Computers, Environment and Urban Systems, Vol. 34, pp. 216-235
Ross J. P (1996) Taguchi techniques for quality engineering. McGraw-Hill, New York.
Susitra D. and Paramasivam S. (2014) ‘Artificial intelligence-based rotor position estimation
 for a 6/4 pole switched reluctance machine from phase inductance’. Int. J. of Modelling,
 Identification and Control, 2014, Vol.22, No.1, pp.68 - 79
Whitley D. and Starkweather T. and Bogart C. (1990) ‘Genetic algorithms and neural
 networks: optimizing connections and connectivity’. Parallel Computing Vol. 14, pp.
 347-361
Zhang G. and Patuwo B. E. and Hu M. Y. (1998) ‘Forecasting with artificial neural networks:
 The state of the art’, International Journal of Forecasting, Vol. 14, Issue 1, pp 35–62.
Zhang L., Tian F. and Liu Set al, (2013) ‘Chaos based neural network optimization for
 concentration estimation of indoor air contaminants by an electronic nose’. Sensors and
 Actuators A, Vol. 189, pp. 161-167.

FIGURES AND TABLES

Fig.1 The pool of candidate regresssor

19

Fig.2 Flowchart for input layer structure selection

Fig.3 Two layer perceptron networks

20

Fig.4 Inputs of virtual test for NN identification (RoadFZ: road displacement at front wheel)

Fig.5 Validation of the optimized NN model for vehicle ride dynamics

Fig.6 Search for the optimal neuron number for the optimized neural network

0 50 100 150 200 250
-0.2

-0.1

0

0.1

0.2

R
oa

d
Z(

m
)

Road Vertical Input

RoadFZ

0 50 100 150 200 250
0

10

20

30

40

C
ar

 S
pe

ed
 (m

/s
)

Time(s)

28 29 30 31 32 33 34 35

-0.02

-0.01

0

0.01

0.02

Time(s)

P
itc

h
A

ng
le

(ra
d)

Validation Out
Measured Out

1 2 3 4 5 6 7 8

99

99.2

99.4

99.6

99.8

100

Number of Neurons

R
 s

qu
ar

es

21

Fig.7 Input profiles for handling model validation (u1: steer angle, u2: forward velocity)

Fig.8 Validation results of handling model

TABLE I
DEFINITION OF INPUTS AND OUTPUTS FOR VEHICLE RIDE MODEL

Original
Inputs/Output
s

Basic Regressors for the Input Layer Units

Vertical Road
Displacement
for Front
Wheel

𝑢𝑢1(𝑡𝑡 − 1),𝑢𝑢1(𝑡𝑡 − 2),𝑢𝑢1(𝑡𝑡 − 3),
𝑢𝑢1(𝑡𝑡 − 4), 𝑢𝑢1(𝑡𝑡 − 5), 𝑢𝑢1(𝑡𝑡 − 6)

m

Vertical Road
Displacement
for Rear
Wheel

𝑢𝑢2(𝑡𝑡 − 1),𝑢𝑢2(𝑡𝑡 − 2),𝑢𝑢2(𝑡𝑡 − 3),
𝑢𝑢2(𝑡𝑡 − 4), 𝑢𝑢2(𝑡𝑡 − 5), 𝑢𝑢2(𝑡𝑡 − 6)

m

Vehicle
Forward
Velocity

𝑢𝑢3(𝑡𝑡 − 1),𝑢𝑢3(𝑡𝑡 − 2),𝑢𝑢3(𝑡𝑡 − 3),
𝑢𝑢3(𝑡𝑡 − 4), 𝑢𝑢3(𝑡𝑡 − 5), 𝑢𝑢3(𝑡𝑡 − 6)

m/s

Pitch Angle

𝑦𝑦(𝑡𝑡 − 1), 𝑦𝑦(𝑡𝑡 − 2),𝑦𝑦(𝑡𝑡 − 3),
𝑦𝑦(𝑡𝑡 − 4), 𝑦𝑦(𝑡𝑡 − 5), 𝑦𝑦(𝑡𝑡 − 6)

rad

0 10 20 30 40 50 60 70
-0.1

0

0.1

S
te

er
 A

ng
le

 (r
ad

)

0 10 20 30 40 50 60 70
0

10

20

30

Time(s)

Fo
rw

ar
d

V
el

oc
ity

(m
/s

)

27 28 29 30 31 32 33 34

1

2

3

4

5

6

7

Time(s)

La
te

ra
l A

cc
el

er
at

io
n

(m
/s

2)

Measured Out(unscaled)
Simulation Out(unscaled)

22

TABLE II

CORRELATION ANALYSIS FOR FIVE SELECTED INPUTS
Iteration No. 1 2 3 4 5
Correlation
Factor 0.9946 0.9636 0.0887 0.1153 0.0441

Selected
Regressors Partial F-ratio

𝑦𝑦(𝑡𝑡 − 1) 2206800 1281200 1290800 1307100 1308900

𝑦𝑦(𝑡𝑡 − 2) 311900 314500 294570 295020

𝑢𝑢32(𝑡𝑡 − 6) 190 376 411

𝑢𝑢3(𝑡𝑡 − 2)
× 𝑦𝑦(𝑡𝑡 − 2) 323 327

𝑢𝑢12(𝑡𝑡 − 1)
× 𝑢𝑢2(𝑡𝑡 − 1) 47

TABLE III
COMPARISON BETWEEN FULL LINEAR TIME-SERIES INPUTS AND OPTIMISED INPUTS

Input
design

Input
term
number

Neuron
number/tot
al number
of weights

MSE
(10-7)

R2 Training
time
(second)

Simulation
time (s/s)

Full Linear
time-series

24

2 / 50

4.57

99.61

18.927

2.59/90

Optimized
inputs

5

2 / 12

0.251

99.98

7.081

2.49/90

TABLE IV
OUTPUT VALIDATION RESULTS FOR HANDLING MODEL

 Outputs Units Model Accuracy
 (R squares)

Average MISO
Training Time/real time

(s/s)

Number of coefficients

Average
MISO
Simulation
Time (s/s)

 with all linear
regressors for
the input layer

with Selected
regressors for
the input layer

with all
linear
regressors

with
selected
regressors

with all
linear
regresso
rs

with
selected
regressors

Lateral
Acceleration m/s2 99.9890 99.9875

3.189/40

1.558/40

626

96

2.89/90

Yaw Rate rad/s 99.9984
 99.9982

Roll Angle rad 99.9993 99.9985

Lateral
Velocity m/s 99.9995 99.9985

Roll Velocity rad/s 99.9833 99.8178
Roll
Acceleration

rad/s
2 99.5124 99.0619

23

TABLE V
DEFINITION OF INPUTS AND OUTPUTS FOR VEHICLE HANDLING MODEL

Original
Inputs/Outputs Basic Regressors for the Input Layer Units

Steer Angle

𝑢𝑢1(𝑡𝑡 − 1),𝑢𝑢1(𝑡𝑡 − 2),𝑢𝑢1(𝑡𝑡 − 3),
𝑢𝑢1(𝑡𝑡 − 4), 𝑢𝑢1(𝑡𝑡 − 5), 𝑢𝑢1(𝑡𝑡 − 6)

rad

Vehicle Forward
Velocity

𝑢𝑢3(𝑡𝑡 − 1),𝑢𝑢3(𝑡𝑡 − 2),𝑢𝑢3(𝑡𝑡 − 3),
𝑢𝑢3(𝑡𝑡 − 4), 𝑢𝑢3(𝑡𝑡 − 5), 𝑢𝑢3(𝑡𝑡 − 6) m/s

Lateral
Acceleration

𝑦𝑦(𝑡𝑡 − 1), 𝑦𝑦(𝑡𝑡 − 2),𝑦𝑦(𝑡𝑡 − 3),
𝑦𝑦(𝑡𝑡 − 4), 𝑦𝑦(𝑡𝑡 − 5), 𝑦𝑦(𝑡𝑡 − 6) rad/s2

TABLE VI

CORRELATION ANALYSIS FOR THE SELECTED INPUTS CHANNELS
Iteration No. 1 2 3 4 5
Correlation
Factor 0.9981 0.7243 0.1522 0.0873 0.0858

Selected
Regressors Partial F-ratio

𝑦𝑦(𝑡𝑡 − 1) 1156800 27418 14767 12423 12311

𝑦𝑦(𝑡𝑡 − 2) 4856 1351 676 671

𝑦𝑦(𝑡𝑡 − 6) 104 134 134

𝑦𝑦(𝑡𝑡 − 3) 34 33

𝑢𝑢12(𝑡𝑡 − 1)
× 𝑢𝑢1(𝑡𝑡 − 6) 33

	I. INTRODUCTION
	II. Input layer Structure Optimisation
	III. Setup of a Two layer network
	IV. Application in dynamic Vehicle modeling
	A. Ride model
	B. Handling model

	V. Conclusion
	Acknowlegements
	References
	Figures and Tables

