55 research outputs found

    Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks

    Full text link
    Diffusion reach probability between two nodes on a network is defined as the probability of a cascade originating from one node reaching to another node. An infinite number of cascades would enable calculation of true diffusion reach probabilities between any two nodes. However, there exists only a finite number of cascades and one usually has access only to a small portion of all available cascades. In this work, we addressed the problem of estimating diffusion reach probabilities given only a limited number of cascades and partial information about underlying network structure. Our proposed strategy employs node representation learning to generate and feed node embeddings into machine learning algorithms to create models that predict diffusion reach probabilities. We provide experimental analysis using synthetically generated cascades on two real-world social networks. Results show that proposed method is superior to using values calculated from available cascades when the portion of cascades is small

    A Combined Representation Learning Approach for Better Job and Skill Recommendation

    Get PDF
    Job recommendation is an important task for the modern recruitment industry. An excellent job recommender system not only enables to recommend a higher paying job which is maximally aligned with the skill-set of the current job, but also suggests to acquire few additional skills which are required to assume the new position. In this work, we created three types of information net- works from the historical job data: (i) job transition network, (ii) job-skill network, and (iii) skill co-occurrence network. We provide a representation learning model which can utilize the information from all three networks to jointly learn the representation of the jobs and skills in the shared k-dimensional latent space. In our experiments, we show that by jointly learning the representation for the jobs and skills, our model provides better recommendation for both jobs and skills. Additionally, we also show some case studies which validate our claims

    Semi-supervised Embedding in Attributed Networks with Outliers

    Full text link
    In this paper, we propose a novel framework, called Semi-supervised Embedding in Attributed Networks with Outliers (SEANO), to learn a low-dimensional vector representation that systematically captures the topological proximity, attribute affinity and label similarity of vertices in a partially labeled attributed network (PLAN). Our method is designed to work in both transductive and inductive settings while explicitly alleviating noise effects from outliers. Experimental results on various datasets drawn from the web, text and image domains demonstrate the advantages of SEANO over state-of-the-art methods in semi-supervised classification under transductive as well as inductive settings. We also show that a subset of parameters in SEANO is interpretable as outlier score and can significantly outperform baseline methods when applied for detecting network outliers. Finally, we present the use of SEANO in a challenging real-world setting -- flood mapping of satellite images and show that it is able to outperform modern remote sensing algorithms for this task.Comment: in Proceedings of SIAM International Conference on Data Mining (SDM'18

    Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding

    Get PDF
    Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through an embedding method provides superior performance in many real-world applications, such as node classification, link prediction, and community detection. However, most of the existing methods for network embedding only utilize topological information of a vertex, ignoring a rich set of nodal attributes (such as user profiles of an online social network, or textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes into account both attributional and relational information entails a complete network information and could further enrich the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices using a designed neural network model that unifies network topological information and nodal attributes. Besides, it utilizes Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node pair and a dissimilar node pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over the state-of-the-art existing methods
    • …
    corecore