
Vol.:(0123456789)1 3

Data Science and Engineering (2019) 4:119–131
https://doi.org/10.1007/s41019-019-0092-x

Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed
Network Embedding

Vachik S. Dave1 · Baichuan Zhang2 · Pin‑Yu Chen3 · Mohammad Al Hasan1

Received: 24 October 2018 / Revised: 8 May 2019 / Accepted: 1 June 2019 / Published online: 22 June 2019
© The Author(s) 2019

Abstract
Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have
attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through
an embedding method provides superior performance in many real-world applications, such as node classification, link
prediction, and community detection. However, most of the existing methods for network embedding only utilize topo-
logical information of a vertex, ignoring a rich set of nodal attributes (such as user profiles of an online social network, or
textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes
into account both attributional and relational information entails a complete network information and could further enrich
the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking
based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices
using a designed neural network model that unifies network topological information and nodal attributes. Besides, it utilizes
Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node pair and a dissimilar
node pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and
clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over
the state-of-the-art existing methods.

Keywords  Attributed network embedding · Bayesian personalized ranking · Neural network

1  Introduction

The past few years have witnessed a surge in research on
embedding the vertices of a network into a low-dimensional,
dense vector space. The embedded vector representation
of the vertices in such a vector space enables effortless

invocation of off-the-shelf machine learning algorithms,
thereby facilitating several downstream network mining
tasks, including node classification [20], link prediction [9],
community detection [22], job recommendation [6], and
entity disambiguation [25]. Most existing network embed-
ding methods, including DeepWalk [15], LINE [18], Node-
2Vec [9], and SDNE [21], utilize the topological informa-
tion of a network with the rationale that nodes with similar
topological roles should be distributed closely in the learned
low-dimensional vector space. While this suffices for node
embedding of a bare-bone network, it is inadequate for most
of today’s network datasets which include useful information
beyond link connectivity. Specifically, for most of the social
and communication networks, a rich set of nodal attributes
is typically available, and more importantly, the similarity
between a pair of nodes is dictated significantly by the simi-
larity of their attribute values. Yet, the existing embedding
models do not provide a principled approach for incorporat-
ing nodal attributes into network embedding and thus fail to
achieve the performance boost that may be obtained through

 *	 Vachik S. Dave
	 vsdave@iupui.edu

	 Baichuan Zhang
	 baichuan24@fb.com

	 Pin‑Yu Chen
	 pin‑yu.chen@ibm.com

	 Mohammad Al Hasan
	 alhasan@iupui.edu

1	 Indiana University Purdue University Indianapolis,
Indianapolis, USA

2	 Facebook Inc., Menlo Park, USA
3	 IBM Research, Yorktown Heights, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0092-x&domain=pdf

120	 V. S. Dave et al.

1 3

modeling attribute based nodal similarity. Intuitively, joint
network embedding that considers both attributional and
relational information could entail complementary informa-
tion and further enrich the learned vector representations.

We provide a few examples from real-life networks to high-
light the importance of vertex attributes for understanding
the role of the vertices and to predict their interactions. For
example, users on social websites contain biographical pro-
files like age, gender, and textual comments, which dictate
who they befriend with and what are their common interests.
In a citation network, each scientific paper is associated with
a title, an abstract, and a publication venue, which largely
dictates its future citation patterns. In fact, nodal attributes
are specifically important when the network topology fails to
capture the similarity between a pair of nodes. For example, in
academic domain, two researchers who write scientific papers
related to “machine learning” and “information retrieval” are
not considered to be similar by existing embedding methods
(say, DeepWalk or LINE) unless they are co-authors or they
share common collaborators. In such a scenario, node attrib-
utes of the researchers (e.g., research keywords) are crucial for
compensating for the lack of topological similarity between
the researchers. In summary, by jointly considering the attrib-
ute homophily and the network topology, more informative
node representations can be expected.

Recently, a few works have been proposed which con-
sider attributed network embedding [12, 23, 26]; however,
the majority of these methods use a matrix factorization
approach, which suffers from some crucial limitations. For
example, earliest among these works is Text-Associated
DeepWalk (TADW) [23], which incorporates the text fea-
tures of nodes into DeepWalk by factorizing a matrix �
constructed from the summation of a set of graph transition
matrices. But, SVD based matrix factorization is both time
and memory consuming, which restricts TADW to scale up
to large datasets. Furthermore, obtaining an accurate matrix
� for factorization is difficult and TADW instead factor-
izes an approximate matrix, which reduces its representation
capacity. Huang et al. [12] proposed another matrix factori-
zation (MF) based method, known as Accelerated Attrib-
uted Network Embedding (AANE). It suffers from the same
limitation as TADW. Another crucial limitation of the above
methods is that they have a design matrix which they factor-
ize, but such a matrix cannot deal with nodal attributes of
rich types. In summary, the representation power of a matrix
factorization based method is found to be poorer than a neu-
ral network based method, as we will show in the experiment
section of this paper.

We found two most recent attributed network embed-
ding methods, GraphSAGE and Graph2Gauss, which use
deep neural network methods. To generate embedding of a
node, GraphSAGE [10] aggregates embedding of its multi-
hope neighbors using a convolution neural network model.

GraphSAGE has a high time complexity, besides such ad
hoc aggregation may introduce noise which adversely affects
its performance. Recently, Bojchevski et al. [2] proposed
the Graph2Gauss (G2G), where they embed each node as
a Gaussian distribution. G2G uses a neural network based
deep encoder to process the nodal attributes and obtains
an intermediate hidden representation, which is then used
to generate the mean vector and the covariance matrix of
the learned Gaussian distribution of a node. As a result, in
G2G’s learning, the interaction between the attribute infor-
mation and the topology information of a node is poor. On
the other hand, the learning pipeline of our proposed Neural-
Brane enables effective information exchange between the
attribute and topology of a node, making it much superior
than G2G while learning embedding for attributed networks.
It is worth noting that some recent works have proposed
semi-supervised attributed network embedding consider-
ing the availability of node labels [13, 14], but our focus in
this work is unsupervised attributed network embedding, for
which vertex labels are not available.

1.1 � Our Solution and Contribution

In this paper, we present Neural-Brane, a novel method for
attributed network embedding. For a vertex of the input
network, Neural-Brane infuses its network topological
information and nodal attributes by using a custom neural
network model, which returns a single representation vec-
tor capturing both the aspects of that vertex. The loss func-
tion of Neural-Brane utilizes BPR [16] to capture attribute
and topological similarities between a pair of nodes in their
learned representation vectors. Specifically, the BPR objec-
tive elevates the ranking of a vertex-pair having similar
attributes and topology by embedding the vertices in close
proximity in the representation space, in comparison with
other vertex-pairs which are not similar. We summarize the
key contributions of this work as follows:

1.	 We propose Neural-Brane, a custom neural network
based model for learning node embedding vectors by
integrating local topology structure and nodal attributes.
The source code (with datasets) of the Neural-Brane is
available at: https​://git.io/fNF6X​.

2.	 Neural-Brane has a novel neural network architecture
which enables effective mixing of attribute and struc-
ture information for learning node representation vectors
capturing both the aspects of a node. Besides, it uses
Bayesian personalized ranking as its objective function,
which is superior than cross-entropy based objective
function used in several existing network embedding
works.

3.	 Extensive validations on four real-world datasets dem-
onstrate that Neural-Brane consistently outperforms

https://git.io/fNF6X

121Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

10 state-of-the-art methods, which results in up to 25%
Macro-F1 lift for node classification and more than 10%
NMI gain for node clustering, respectively.

2 � Related Work

There is a large body of works on representation learning
on graphs (a.k.a. network embedding). Well known among
these methods are DeepWalk [15] and Node2Vec [9], both
of which capture local topology around a node through
sequences of vertices obtained by uniform or biased ran-
dom walk, and then use the Skip-Gram language model for
obtaining the representation of each vertex. LINE [18] com-
putes the similarity of a node to other nodes as a probability
distribution by computing first and second order proximi-
ties and designs a KL divergence based objective function
which minimizes the divergence between empirical distribu-
tion from data and actual distribution from the embedding
vectors. GraRep [3] is a matrix factorization based approach
that leverages both local and global structural information.
Furthermore, a few neural network based approaches are
proposed for network embedding, such as [4, 5, 21] . Inter-
ested readers can refer to the survey articles in [8, 11] ,
which present a taxonomy of various network embedding
methods in the existing literature.

Most of the aforementioned works only investigate
the topological structure for network embedding, which
is in fact only a partial view of an attributed network. To
bridge this gap, a few attributed network embedding based
approaches [7, 12, 14, 17, 23, 26] are proposed. The gen-
eral philosophy of such works is to integrate nodal features,
such as text information and user profile, into topology-
oriented network embedding model to enhance the perfor-
mance of downstream network mining tasks. For example,
TADW [23] performs low-rank matrix factorization con-
sidering graph structure and text features. Furthermore,
TriDNR [14] adopts a two-layer neural networks to jointly
learn the network representations by leveraging internode,
node–word, and label–word relationships. Different from
the existing methods, our proposed unsupervised embed-
ding method (Neural-Brane) utilizes a designed neural net-
work architecture and a novel Bayesian personalized ranking
based loss function to learn better network representations.

3 � Problem Statement

Throughout this paper, scalars are denoted by lowercase
alphabets (e.g., n). Vectors are represented by boldface low-
ercase letters (e.g., � ). Bold uppercase letters (e.g., � ) denote
matrices, and the ith row of a matrix � is denoted as �i . The
transpose of the vector � is denoted by �T . The dot product

of two vectors is denoted by ⟨�, �⟩ . ||�||F is the Frobenius
norm of matrix � . Finally, calligraphic uppercase letter (e.g.,
X  ) is used to denote a set and |X| is used to denote the car-
dinality of the set X .

Let G = (V, E,�) be an attributed network, where V is a
set of n nodes, and E is a set of edges, and � is a n × m binary
attribute matrix such that the row �i denotes a row attribute
vector associated with node i in G. Each edge (i, j) ∈ E is
associated with a weight wij . The neighbors of node i are
represented as N(i) . m is the number of node attributes in
� . We use A(i) to denote the nonzero attribute set of node i.

The attributed network embedding problem is for-
mally defined as follows: Given an attributed network
G = (V, E,�) , we aim to obtain the representation of its ver-
tices as a n × d matrix � = [�T

1
, ..., �T

n
]T ∈ IR

n×d , where �i is
the row vector representing the embedding of node i. The
representation matrix � should preserve the node proximity
from both network topological structure E and node attrib-
utes � . Eventually, � serves as feature representation for
the vertices of G, as such, that they can be used for various
downstream network mining tasks.

4 � Neural‑Brane: Attributed Network
Embedding Framework

In this section, we discuss the proposed neural Bayesian
personalized ranking model for attributed network embed-
ding. The model uses a neural network architecture with
embedding layer, hidden layer, output layer, and BPR layer
from bottom to top, as illustrated in Fig. 1. Specifically, the
embedding layer learns a unified vector representation of a
node from the vector representation of its nodal attributes
and neighbors; the hidden layer applies nonlinear dimen-
sionality reduction over the embedding vectors of the nodes;
the output layer and the BPR layer enable model inference
through back-propagation.

4.1 � Embedding Layer

The embedding layer has two embedding matrices � and �′ ;
each row of � is a d1-dimensional vector representation of
an attribute, and each row of �′ is a d2-dimensional vector
representation of a vertex (both d1 and d2 are user-defined
parameter). These matrices are updated iteratively during
the learning process. For a given vertex u, embedding layer
produces u’s latent representation vector �u by learning from
embedding vectors of u’s attributes and neighbors, i.e., cor-
responding rows of � and �′ , respectively; thus, the neigh-
bors and attributes of u are jointly involved in the construc-
tion of u’s latent representation vector ( �u ), which enables
Neural-Brane to bring the latent representation vectors of

122	 V. S. Dave et al.

1 3

nodes with similar attributes and neighborhood in close
proximity in the latent space.

We illustrate the vector construction process using a toy
attributed graph in Fig. 2. Given the vertex b from the toy
graph, the embedding layer first takes its attribute and adja-
cency vectors (from � and �′ ) as input and then generates its
corresponding attributional and nodal embedding matrices
( �(attr)

b
 and ��(nbr)

b
 ) by using the CONCAT-LOOKUP(⋅) func-

tion. After that, attributional and neighborhood embedding
vectors are obtained from �(attr)

b
 and ��(nbr)

b
 by using the max

pooling operation, respectively. Finally, the learned attri-
butional and neighborhood embedding vectors are concat-
enated together to obtain the final embedding representation
of the vertex b. Below we provide more details of the opera-
tions in embedding layer.

4.1.1 � Encoding Attributional Information

Given a node u ∈ V and the attribute matrix � , �u ∈ IR
1×m

is � ’s row corresponding to u’s binary attribute vector. We
apply a row-wise concatenation based embedding lookup
layer to transform �u into a latent matrix, �(attr)

u
 , shown as

follows:

where � ∈ IR
m×d1 is the attribute embedding matrix in which

each row is a d1 (user-defined parameter) sized vector repre-
sentation of an attribute. Lookup is performed by CONCAT-
LOOKUP(⋅) function which first performs a row projection

(1)�
(attr)
u

= CONCAT-LOOKUP(�, �u),

on � by selecting the rows corresponding to the attribute
set A(u) and then stacks the selected vectors row-wise into
the matrix �(attr)

u
∈ IR

|A(u)|×d1 . Then we apply a max pooling
operation on the generated �(attr)

u
 matrix in order to transform

it into a single vector. Specifically, max pooling operation
retains the most informative signal by extracting the largest
value in each dimension (i.e., column) of the matrix �(attr)

u

to obtain �attr
u

.

where �attr
u

∈ IR
1×d1 is the latent vector representation of

node u based on its attributional signals and MP(⋅) denotes
the max pooling operation.

4.1.2 � Encoding Network Topology

Given a node u, we describe its neighborhood by using a
binary adjacency vector, denoted as �u ∈ IR

1×n , in which
u’s neighbors are set to 1, and the rest of entries are set as
0. Similar to the operations we use for encoding the attri-
butional information, we apply a row-wise concatenation
based lookup layer to transform �u into a latent matrix ��(nbr)

u

and then apply max pooling operation on the obtained latent
matrix. Thus,

(2)�
attr

u
= MP(�(attr)

u
),

(3)�
�(nbr)
u

= CONCAT-LOOKUP(��, �u)

BPR Layer

Output Layer

Hidden Layer

Embedding
Layer

Input Data

Embedding

Hidden
Output

niai

CONCAT-LOOKUP Max-Pooling Integra�on

fu fjfi

(∙ +)

hu hjhi

= , = ,

−ln −

nuau njaj

Fig. 1   Neural-Brane architecture. Given a node u, �u is its binary
attribute vector and �u is its adjacency vector. Our training uses node
triplets (u, i, j), such that (u, i) ∈ E and (u, j) ∉ E

1 0 1 1 00 1 0 0 0 1

Inputs

()()

̵

∙ [max−pooling]

⨁ [concat]

a

e
c

d [x4]

[x2, x4, x5]

[x2, x6]

[x2]

[x1, x3 , x7]

b

(1 ×)

(3 × 2)(2 × 1)

(1 × 1) (1 × 2)

e

a
b
c
d

2 = 4

′

x5
x6

x1
x2
x3
x4

x7

1 = 3

x2
x6

()

a
c
d

′()

Fig. 2   Mechanism of the embedding layer for the vertex b of a toy
attributed graph. The graph contains 5 vertices and 6 edges, where
each vertex is associated with a collection of nodal attributes. For
example, vertex b is connected to vertices {a, c, d} and associated
with attributes {x2, x6} , respectively. The cardinality of the attribute
set {x1,⋯ , x7} is 7

123Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

where �� ∈ IR
n×d2 is the neighborhood embedding matrix

for lookup (similar to matrix � ), and ��(nbr)
u

∈ IR
|N(u)|×d2 is

the obtained latent matrix generated from the CONCAT-
LOOKUP(⋅) function. Moreover, �nbr

u
∈ IR

1×d2 obtained
from the MP(⋅) operation is the latent vector representation
of node u based on its neighborhood topology.

4.1.3 � Integration Component

Once we obtain the vector representation of node u from
both its attributional information and topological structure
as developed in Eqs. 1, 2, 3, and 4, we further integrate both
latent vectors into a unified vector representation by vector
concatenation, shown as follows:

where �u ∈ IR
1×d ( d1 + d2 = d ) and “||” denotes the vector

concatenation operation.

4.2 � Hidden Layer

Given the obtained embedding vector �
�
∈ IR

1×d for node u
in the attributed network G, the hidden layer aims to trans-
form its embedding vector into another representation �u , in
which signals from attributes and neighborhood of a vertex
interact with each other. Formally, given �u , the hidden layer
produces �u ∈ IR

1×h by the following formula:

Here we use rectified linear function ReLU(x), defined
as max(0, x) , as the activation function for achieving better
convergence speed. Parameters � ∈ IR

h×d and � ∈ IR
h×1

are weights and bias for the hidden layer, respectively; h is
a user-defined parameter denoting the number of neurons in
the hidden layer. It is worth mentioning that in the hidden
layer, all the nodes share the same set of parameters {�,�} ,
which enables information sharing across different vertices
(see the box denoted as “hidden layer” in Fig. 1).

4.3 � Output and BPR Layers

Given a node pair u and i, we use their corresponding repre-
sentations �u and �i from hidden layer (Eq. 6) as input for the
output layer. The task of this layer is to measure the similar-
ity score between a pair of vertices by taking the dot product
of their representation vectors. Since this computation uses
the vector representation of the vertices from the hidden
layer, it encodes both attribute similarity and neighborhood
similarity jointly. The similarity score between vertices u
and i, defined as sui , is calculated as ⟨�u, �i⟩.

(4)�
nbr

u
= MP(��(nbr)

u
),

(5)�u = �
attr

u
|| �nbr

u
∶= [�attr

u
�
nbr

u
],

(6)�
T
u
= ReLU(��

T
u
+ �)

BPR layer implements the Bayesian personalized ranking
objective. For the embedding task, the ranking objective is
that the neighboring nodes in the graph should have more
similar vector representations in the embedding space than
non-neighboring nodes. For example, the similarity score
between two neighboring vertices u and i should be larger
than the similarity score between two non-neighboring
nodes u and j. As shown in Fig. 1, given the vertex triplet
(u, i, j), we model the probability of preserving ranking order
sui > suj using the sigmoid function �(x) = 1

1+e−x
 .

Mathematically,

As we observe from Eq. 7, the larger the difference
between sui and suj , the more likely the ranking order sui > suj
is preserved. By assuming that all the triplet based rank-
ing orders generated from the graph G to be independent,
the probability of all the ranking orders being preserved is
defined as follows:

where D represents training triplet sets generated from
G and i >u j is a shorthand notation denoting sui > suj ; the
notation is motivated from the concept that i is larger than j
considering the partial-order relation >u.

The goal of our attributed network embedding is to maxi-
mize the expression in Eq. 8. For the computational con-
venience, we minimize the sum of negative likelihood loss
function, which is shown as follows:

where � = {�,��,�,�} are model parameters used in all
different layers and � ⋅ ||�||2

F
 is a regularization term to pre-

vent model overfitting.

4.4 � Model Inference and Optimization

We employ the back-propagation algorithm by utilizing
mini-batch gradient descent to optimize the parameters
� = {�,��,�,�} in our model. The first step of mini-batch
gradient descent is to sample a batch of triplets from G.
Specifically, given an arbitrary node u, we sample one of its
neighbors i, i.e., i ∈ N(u) , with the probability proportional
to the edge weight wij . On the other hand, we sample its
non-neighboring node j, i.e., j ∉ N(u) , with the probabil-
ity proportional to the node degree in the graph. Next, for
each mini-batch training triplet, we compute the derivative

(7)
P
�
sui > suj��u, �i, �j

�
= 𝜎

�
sui − suj

�

=
1

1 + e
−

�
⟨��,�i⟩−⟨�u,�j⟩

�

(8)
∏

(u,i,j)∈D

P(i >u j) =
∏

(u,i,j)∈D

𝜎
(
sui − suj

)
,

(9)L(�) = min
�

−
∑

(u,i,j)∈D

ln �
(
sui − suj

)
+ � ⋅ ||�||2

F

124	 V. S. Dave et al.

1 3

and update the corresponding parameters � . For that, first
we find the gradient of the objective function in Eq. 9 with
respect to model parameter

Now, for each model parameter we find �

��
(sui − suj)

using the chain rule. In particular, by back-propagating
from Bayesian personalized ranking layer to hidden layer,
we update the gradients w.r.t. weight matrix � and bias vec-
tor � accordingly. Then in the embedding layer, we update
the gradients of the corresponding embedding vectors (i.e.,
rows) in {�,��} associated with all the neighboring nodes
and attributes involved in each mini-batch training triplet,
respectively. Mathematically,

where � is the learning rate. In addition, we initialize all
model parameters � by using a Gaussian distribution with
0 mean and 0.01 standard deviation. The pseudo-code of
the proposed Neural-Brane framework is summarized in
Algorithm 1.

4.5 � Model Complexity Analysis

For the time complexity analysis, given the sampled train-
ing triplet set D , the total costs of calculating and updat-
ing gradients of L w.r.t. corresponding embedding vectors
involved in {�,��} are O(d) . Similarly, the total costs of

(10)

�L(�)

��
= −

∑

(u,i,j)∈D

� ln �
(
sui − suj

)

��
+ �

�||�||2
F

��

= −
∑

(u,i,j)∈D

(
1 − �(sui − suj)

)
⋅

�

��

(
sui − suj

)

+ 2�||�||F

(11)�
t+1 = �

t − � ×
�L(�)

��

computing and updating gradients of L w.r.t. parameters
{�,�} in the hidden layer are O(hd + h) . To generate train-
ing mini-batch, we use degree proportional sampling and its
time complexity is O(n) . Therefore, the total computational
complexity of the proposed methodology for Neural-Brane
is |D| ∗

(
O(d) +O(hd + h) +O(n)

)
 . As time complexity of

the Neural-Brane is linear to the embedding size, hidden
layer dimension, and input graph size, it is extremely fast.
For example, it takes around 15 minutes to learn embedding
for our largest dataset Arnetminer (see Table 1). We can
easily observe that the space complexity for the proposed
Neural-Brane is proportional to input graph size and embed-
ding size, i.e., O(n ⋅ d).

5 � Experiments and Results

In this section, we first introduce the datasets and baseline
comparisons used in this work. Then we thoroughly evaluate
our proposed Neural-Brane through two downstream data
mining tasks (node classification and clustering) on four
real-world networks, for which node attributes are available.
Finally, we analyze the quantitative experimental results and
investigate parameter sensitivity, convergence behavior, and
the effect of pooling strategy of Neural-Brane.

Table 1   Statistics of four real-world datasets

Dataset # Nodes # Edges # Attributes # Classes

CiteSeer 3312 4732 3703 6
Arnetminer 15,753 109,548 135,647 5
Caltech36 671 15,645 64 2
Reed98 895 17,631 64 2

125Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

5.1 � Experimental Setup

5.1.1 � Datasets

We perform experiments on four real-world datasets, whose
statistics are shown in Table 1. The largest among these net-
works has around 15.75 K vertices and 109.5 K edges. Note
that publicly available networks exist, which are larger than
the networks that we use in this work, but those larger net-
works are neither attributed nor they have class label for the
vertices, so we cannot use those in our experiment. Nev-
ertheless, our largest dataset Arnetminer has more nodes,
edges, and attributes than datasets used by recent attribute
embedding papers [23, 26]. More description of the datasets
is given below.

CiteSeer1 is a citation network, in which nodes refer
to papers and links refer to citation relationship among
papers. Selected keywords from the paper are used as nodal
attributes. Additionally, the papers are classified into 6 cat-
egories according to its research domain, namely artificial
intelligence (AI), database (DB), information retrieval (IR),
machine learning (ML), human computer interaction (HCI),
and multi-agent analysis.

Arnetminer2 is a paper relation network consisting of
scientific publications from 5 distinct research areas. Spe-
cifically, we select a list of representative conferences and
journals from each of them. (1) Data Mining (KDD, SDM,
ICDM, WSDM, PKDD); (2) Medical Informatics (JAMIA,
J. of Biomedical Info., AI in Medicine, IEEE Tran. on Medi-
cal Imaging, IEEE Tran. on Information and Technology
in Biomedicine); (3) Theory (STOC, FOCS, SODA); (4)
Computer Vision and Visualization (CVPR, ICCV, VAST,
TVCG, IEEE Visualization and Information Visualization);
(5) Database (SIGMOD, VLDB, ICDE). Authors and key-
words similarity between two papers are used for building
edges. Keywords from paper title and abstract are used as
attributes.

Caltech36 and Reed98 [19] are two university Face-
book networks. Specifically, each node represents a user
from the corresponding university and edge represents user
friendship. The attributes of each node are represented by
a 64-dimensional one-hot vector based on gender, major,
second major/minor, dorm/house, and year. We use student/
faculty status of a node as the class label.

5.1.2 � Baseline Comparison

To validate the benefit of our proposed Neural-Brane, we
compare it against 10 different methods. Among all the

competing methods, DeepWalk, LINE, and Node2Vec are
topology-oriented network embedding approaches. NNMF,
DeepWalk + NNMF, GraphSAGE, PTE-KL, TADW,
AANE, and G2G are state of the arts for combining both
network structure and nodal attributes for network repre-
sentation learning. Note that PTE-KL is a semi-supervised
embedding approach, and we hold the label information out
for a fair comparison.

	 1.	 DeepWalk [15]: It utilizes Skip-Gram based language
model to analyze the truncated uniform random walks
on the graph.

	 2.	 LINE [18]: It embeds the network into a latent space by
leveraging both first-order and second-order proximi-
ties of each node.

	 3.	 Node2Vec [9]: Similar to DeepWalk, Node2Vec
designs a biased random walk procedure for network
embedding.

	 4.	 Non-Negative Matrix Factorization (NNMF): The
model captures both node attributes and network struc-
ture to learn topic distributions of each node.

	 5.	 DW+NNMF: It simply concatenates the vector repre-
sentations learned by DeepWalk and NNMF.

	 6.	 GraphSAGE [10]: GraphSAGE presents an inductive
representation learning framework that leverages node
feature information (e.g., text attributes) to efficiently
generate node embeddings in the network.

	 7.	 PTE-KL [17]: Predictive Text Embedding framework
aims to capture the relations of paper–paper and paper–
attribute under matrix factorization framework. The
objective is based on KL divergence between empirical
similarity distribution and embedding similarity distri-
bution.

	 8.	 TADW [23]: Text-Associated DeepWalk combines the
text features of each node with its topology information
and uses the MF version of DeepWalk.

	 9.	 AANE [12]: Accelerated Attributed Network Embed-
ding learns low-dimensional representation of nodes
from network linkage and content information through
a joint matrix factorization.

	10.	 G2G [2]: Graph2Gauss learns node representation such
that each node vector is a Gaussian distribution.

5.1.3 � Parameter Setting and Implementation Details

There are a few user-defined hyper-parameters in our pro-
posed embedding model. We fix the embedding dimension
d = 150 (same for all baseline methods) with d1 = d2 = 75 .
For the number of neurons in hidden layer h, we set it to be
150. For the regularization coefficient � in the embedding
model (see Eq. 9), we set it as 0.00005. In addition to that,

1  https​://linqs​.soe.ucsc.edu/data.
2  https​://amine​r.org/topic​_paper​_autho​r.

https://linqs.soe.ucsc.edu/data
https://aminer.org/topic_paper_author

126	 V. S. Dave et al.

1 3

we fix the learning rate � = 0.5 (see Eq. 11) and batch size
to be 100 during the model learning and optimization. For
baseline methods such as GraphSAGE, PTE-KL, AANE,
G2G and others, we select learning rate � from the set
{0.01, 0.05, 0.1, 0.5}3 using grid search. Similarly for PTE-
KL, TADW and other baseline methods regularization coef-
ficient � is selected from the set {0.01, 0.001, 0.0001} . For
random walk based baselines (DeepWalk and Node2Vec),
we select the best walk length from the set {20, 40, 60, 80} .
For the rest of hyper-parameters, we use default parameter
values as suggested by their original papers.

5.2 � Quantitative Results

5.2.1 � Node Classification

For fair comparison between network embedding methods,
we purposely choose a linear classifier to control the impact
of complicated learning approaches on the classification
performance. Specifically, we treat the node representations

learned by different approaches as features and train a logis-
tic regression classifier for multi-class/binary classification.
In each dataset, p% ∈ {30%, 50%, 70%} of nodes are ran-
domly selected as training set and the rest as test set. We
use the widely used metric Macro-F1 [24] for classifica-
tion assessment. Each method is executed 10 times, and the
average value is reported. For Neural-Brane, we also report
standard deviation. For better visual comparison, we high-
light the best Macro-F1 score of each training ratio (p) with
bold font.

Table 2 shows results for node classification, where
each column is an embedding method and rows represent
different train splits (p). As we observe from Table 2, per-
formance of the last four (PTE-KL, TADW, AANE, G2G)
baseline methods is highly competitive among each other.
But, our proposed Neural-Brane consistently outperforms all
these and other baseline methods under all training ratios.
Moreover, the overall performance improvement that our
Neural-Brane delivers over the second best method is sig-
nificant. For example, in Citeseer dataset, when training ratio
p ranges from 30% to 70% , Neural-Brane outperforms the
G2G by 8.8% , 8.6% , 8.4% in terms of Macro-F1, respectively.
Furthermore, the improvement over G2G is statistically sig-
nificant (paired t-test with p-value ≪ 0.01). The relatively

Table 2   Quantitative results of Macro-F1 between our proposed Neural-Brane and other baselines for the node classification task using logistic
regression on various datasets (embedding dimension = 150)

*GraphSAGE for Arnetminer is not able to complete after 2 days

Citeseer

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.4952 0.4304 0.5462 0.4367 0.5185 0.4418 0.5456 0.5756 0.5684 0.5860 �.����± .0075

50% 0.5199 0.4590 0.5632 0.4619 0.5598 0.4621 0.5647 0.5900 0.5844 0.5939 �.����± .0026

70% 0.5318 0.4600 0.5743 0.4711 0.5780 0.4662 0.5732 0.6106 0.5996 0.6003 �.����± .0115

Arnetminer

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE* PTE-KL TADW AANE G2G Neural-Brane

30% 0.7281 0.5364 0.7729 0.6087 0.6968 – 0.5341 0.7969 0.7902 0.8062 �.����± .0016

50% 0.7336 0.5422 0.7837 0.6541 0.7016 – 0.5426 0.8031 0.8009 0.8145 �.����± .0017

70% 0.7389 0.5485 0.7877 0.6748 0.7044 – 0.5519 0.8079 0.8065 0.8186 �.����± .0034

Caltech36

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7824 0.8023 0.7859 0.5243 0.8480 0.7233 0.8701 0.8748 0.8527 0.8523 �.����± .0121

50% 0.7949 0.8079 0.8080 0.5953 0.8552 0.7712 0.8697 0.8866 0.8843 0.8691 �.����± .0134

70% 0.8217 0.8112 0.8131 0.6445 0.8712 0.8220 0.8786 0.8929 0.9008 0.8977 �.����± .0139

Reed98

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7662 0.7195 0.7682 0.6472 0.8055 0.6325 0.8333 0.8460 0.8285 0.7515 �.����± .0105

50% 0.7774 0.7195 0.7805 0.7123 0.8275 0.7012 0.8413 0.8519 0.8433 0.7772 �.����± .0176

70% 0.7927 0.7446 0.7925 0.7695 0.8321 0.7682 0.8590 0.8636 0.8660 0.7925 �.����± .0146

3  For GraphSAGE, we also check smaller values of � , i.e.,
{10−4, 10−5, 10−6} as suggested in the paper [10].

127Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

good performance of our proposed Neural-Brane across
various training ratios is due to the fact that our proposed
neural Bayesian personalized ranking framework is able to
generate high-quality latent features by capturing crucial
ordering information between nodes and incorporating nodal
attributes and network topology into network embedding.
Furthermore, BPR is shown to be better suited than other
loss functions, such as point-wise square loss in TADW and
KL divergence based objective in LINE and PTE-KL, for
placing similar nodes in the embedding space for the down-
stream node classification task.

Among the competing methods, topology-oriented net-
work embedding approaches such as LINE and DeepWalk
perform fairly poor on all datasets. This is mainly because
the network structure is rather sparse and only contains lim-
ited information. On the other hand, TADW is much better
than DeepWalk due to the fact that textual contents contain
richer signals compared to the network structure. When
concatenating the embedding vectors from DeepWalk and
NNMF, the classification performance is relatively improved
compared to a single DeepWalk. However, the naive combi-
nation between DeepWalk and NNMF is far from optimal,
compared to our proposed Neural-Brane. Note that Graph-
SAGE for Arnetminer dataset is not able to complete after 2

days on contemporary server having 64 cores with 2.3 GHz
and 132 GB memory.

5.2.2 � Visualization and Node Clustering

The primary goal of graph embedding approaches is to put
similar nodes closer in their corresponding latent space;
hence, a desirable embedding method should generate clus-
ters of similar nodes in the embedding space. Visualization
for a large number of classes in two-dimensional space is
impractical. Instead, in Fig. 3, we plot 2D representation
of learned vector representations for Caltech36 and Reed98
datasets. Note that both of these datasets contain only 2
classes and hence provide interpretable visualization. Specif-
ically, we plot embedding representations of Neural-Brane
along with two best competing methods, namely TADW and
AANE. These figures clearly demonstrate that Neural-Brane
provides better discrimination of classes through clustering
in the latent space compared to both TADW and AANE.

For the other two larger datasets (CiteSeer and Arnet-
miner), we use k-means clustering approach to the learned
vector representations of nodes and utilize both Purity
and Normalized Mutual Information (NMI) [24] to assess
the quality of clustering results. Furthermore, we match
the ground truth number of clusters as input for running

(a) Representation of TADW
for Caltech36

(b) Representation of AANE
for Caltech36

(c) Representation of Neural-
Brane for Caltech36

(d) Representation of TADW
for Reed98

(e) Representation of AANE
for Reed98

(f) Representation of Neural-
Brane for Reed98

Fig. 3   Visualization comparison among various embedding methodologies for Caltech36 and Reed98 datasets

128	 V. S. Dave et al.

1 3

k-means, execute the clustering process 10 times to allevi-
ate the sensitivity of centroid initialization, and report the
average results.

The clustering results for both CiteSeer and Arnetminer
datasets are depicted in Fig. 4. As we can see, our proposed
Neural-Brane consistently achieves the best clustering
results in contrast to all competing baselines. For example,
in Citeseer dataset, our proposed Neural-Brane achieves
0.3524 NMI. However, the best competing method PTE-
KL only obtains 0.2653 NMI, indicating more than 32.8%
gains. Similarly, for Arnetminer dataset, Neural-Brane
obtains 34.5% improvements over the best competing
approach DeepWalk in terms of NMI. The possible expla-
nation for higher performance of Neural-Brane could be due
to the fact that our proposed Bayesian ranking formulation
directly optimizes the pair-wise distance between similar and

dissimilar nodes, thus making their corresponding vectors
cluster-aware in the embedded space.

5.3 � Analysis of Parameter Sensitivity and Algorithm
Convergence

We conduct experiments to demonstrate how the embed-
ding dimension affects the node classification task
using our proposed Neural-Brane. Specifically, we vary
the number of embedding dimension parameter d as
{50, 100, 150, 200, 250, 300} and set the training ratio
p = 70% . We report the Macro-F1 results on all four data-
sets, which is shown in Fig. 5a. As we observe, as the
embedding dimension d increases, the classification perfor-
mance in terms of Macro-F1 first increases and then tends
to stabilize. The possible explanation could be that when

(a) CiteSeer Dataset (b) Arnetminer Dataset

Fig. 4   Performance of node clustering

(a) The effect of embedding dimension for
node classification

(b) Convergence analysis of the ranking ob-
jective function shown in Equation 9

Fig. 5   Analysis of the embedding dimension and convergence

129Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

the embedding dimension is too small, the embedding rep-
resentation capability is not sufficient. However, when the
embedding dimension becomes sufficiently large, it captures
all necessary information from the data, leading to the stable
classification performance. Furthermore, we investigate the
convergence trend of Neural-Brane. As shown in Fig. 6b,
Neural-Brane converges approximately within 10 epochs
and achieves promising convergence results in terms of the
objective function value on all four datasets.

5.4 � Effect of Pooling Strategy and Number
of Training Triples

We investigate the effect of the pooling strategy in the
embedding layer for the task of node classification. For
the comparison, we consider to take the sum rather than
max pooling and hold the rest of neural architecture and

hyper-parameter settings constant. We report the Macro-
F1 results on all four datasets with training ratio p = 70% ,
which is shown in Fig. 7a. As we observe, max pooling con-
sistently outperforms the alternative sum pooling strategy
for the task of node classification across all datasets. The
possible explanation is due to the fact that the max pool-
ing operation returns the strongest signal for each embed-
ding dimension, which alleviates noisy signals. On the other
hand, the sum pooling operation considers accumulated sig-
nals from each input embedding dimension, which leads to
inaccurate information aggregation.

Finally, to verify the efficiency of the Neural-Brane, we
study how embedding generation time and node classifica-
tion performance vary with count of training triples. For
that, we use Arnetminer dataset and plot macro-F1 results
and embedding generation time over different counts of
training triples in Fig. 7b. We can see that for half a million

(a) The pooling strategy comparison for the
task of node classification

(b) Effect of # triples used for training on
performance and time (Arnetminer dataset)

Fig. 6   Study effects of pooling strategy and # training triples

(a) Results for scalability
study

(b) Results of performance
using different loss functions

(c) Combined and indepen-
dent learning of attribute and
neighborhood embedding.

Fig. 7   Scalability study and importance of BPR loss and other layers of the Neural-Brane 

130	 V. S. Dave et al.

1 3

triples the Neural-Brane doesn’t render the optimal result as
the method is not converged. However, it converges with 1.5
million triples and consistently provides very good perfor-
mance (high Macro-F1) for higher triple counts. Notice that,
for this biggest dataset (Arnetminer), Neural-Brane takes
around 6 minutes ( < 400 seconds) to sample the 1.5 million
triples and train with those triples. This observation also
proves that Neural-Brane is highly scalable because of its
linear time complexity (Sect. 4.5).

5.5 � Scalability Study

To check the scalability of the proposed Neural-Brane, we
conducted experiment to check run times of various large
synthetic networks. To generate these synthetic networks,
we use popular Barabási–Albert preferential attachment
model [1]. We generate low density random binary vector
of size 500 as a synthetic attributes for each node. For this
experiment, we vary size of the networks such that they have
nodes in range of 25,000 to 100,000 with 25,000 increment.
The running time of these networks is depicted in Fig. 7a,
which shows a linear increase in run time with the increase
in size of the network. The empirical linear increase in run
time with respect to the size of the network is consistent with
our model complexity analysis in Sect. 4.5.

5.6 � Effectiveness of BPR Loss and Contribution
of Other Neural‑Brane layers

As we discussed before, the ranking BPR loss as an objec-
tive function highly contributes toward the remarkable
performance of the proposed Neural-Brane. To support
this claim, we conduct comparison experiment where we
replace the objective function of the Neural-Brane with tra-
ditional Hinge loss and Cross-entropy (Log) loss. For fair
comparison, we run the modified models with the same set
of parameters discussed in Sect. 5.1.2. The performance of
the modified methods and proposed Neural-Brane is shown
in Fig. 7b, where we can see that Neural-Brane with BPR
loss always outperforms both Log loss- and Hinge loss based
methods.

Though BPR loss helps in performance improvement
in the Neural-Brane, we need to check the importance
of embedding and hidden layers which are responsible
for information fusion of topology and attributes. For
this experiment, we feed attribute vector ( vattr

b
 for node b)

directly to the output layer to learn attribute embedding
( � ). Similarly, we feed neighborhood vector ( vnbr

b
 for node

b) to output layer to learn neighborhood based embedding
( �′ ). We concatenate these vectors for each node as a final
node representation vectors; we call this method as node &
attribute separate embedding. We compare the classifica-
tion performance of this embedding method with proposed

Neural-Brane, and results are shown in Fig. 7c. This com-
parison result shows that the embedding and hidden layers
of the proposed method contribute toward improvement in
the performance. Hence, from these results, we can conclude
that both BPR loss as an objective function and advanced
approach of information fusion using embedding and hidden
layers jointly produce superior performance for the proposed
Neural-Brane.

6 � Conclusion

We present a novel neural Bayesian personalized ranking
formulation for attributed network embedding, which we
call Neural-Brane. Specifically, Neural-Brane combines a
designed neural network model and a novel Bayesian rank-
ing objective to learn informative vector representations that
jointly incorporate network topology and nodal attributions.
Experimental results on the node classification and clus-
tering tasks over four real-world datasets demonstrate the
effectiveness of the proposed Neural-Brane over 10 baseline
methods.

Funding  Funding was provided by Indiana University (Grant No. IU-
Bridge research grant).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Barabási AL, Albert R (1999) Emergence of scaling in random
networks. Science 286(5439):509–512

	 2.	 Bojchevski A, Günnemann S (2018) Deep gaussian embedding
of graphs: unsupervised inductive learning via ranking. In: Inter-
national conference on learning representations (ICLR)

	 3.	 Cao S, Lu W, Xu Q (2015) Grarep: Learning graph representa-
tions with global structural information. In: ACM International
on conference on information and knowledge management, pp
891–900

	 4.	 Cao S, Lu W, Xu Q (2016) Deep neural networks for learning
graph representations. In: AAAI, pp 1145–1152

	 5.	 Chang S, Han W, Tang J, Qi GJ, Aggarwal CC, Huang TS (2015)
Heterogeneous network embedding via deep architectures. In:
International conference on knowledge discovery and data min-
ing, pp 119–128

	 6.	 Dave V, Zhang B, Hasan MA, Jadda KA, Korayem M (2018)
A combined representation learning approach for better job and
skill recommendation. In: ACM conference on information and
knowledge management

	 7.	 García-Durán A, Niepert M (2017) Learning graph representa-
tions with embedding propagation. In: NIPS, pp 5125–5136

	 8.	 Goyal P, Ferrara E (2017) Graph embedding techniques, applica-
tions, and performance: a survey. CoRR arXiv​:1705.02801​

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.02801

131Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

	 9.	 Grover A, Leskovec J (2016) Node2vec: scalable feature learn-
ing for networks. In: ACM SIGKDD international conference on
knowledge discovery and data mining, KDD ’16, pp 855–864

	10.	 Hamilton W, Ying Z, Leskovec J (2017) Inductive representa-
tion learning on large graphs. Adv Neural Inf Process Syst
30:1024–1034

	11.	 Hamilton WL, Ying R, Leskovec J (2017) Representation learn-
ing on graphs: methods and applications. IEEE Data Eng Bull
40(3):52–74

	12.	 Huang X, Li J, Hu X (2017) Accelerated attributed network
embedding. In: SIAM international conference on data mining,
pp 633–641

	13.	 Huang X, Li J, Hu X (2017) Label informed attributed network
embedding. In: ACM international conference on web search and
data mining, pp 731–739

	14.	 Pan S, Wu J, Zhu X, Zhang C, Wang Y (2016) Tri-party deep net-
work representation. In: International joint conference on artificial
intelligence, pp 1895–1901

	15.	 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning
of social representations. In: ACM SIGKDD international con-
ference on knowledge discovery and data mining, KDD ’14, pp
701–710

	16.	 Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009)
Bpr: Bayesian personalized ranking from implicit feedback. In:
Conference on uncertainty in artificial intelligence, UAI ’09, pp
452–461

	17.	 Tang J, Qu M, Mei Q (2015) Pte: Predictive text embedding
through large-scale heterogeneous text networks. In: SIGKDD,
pp 1165–1174

	18.	 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line:
large-scale information network embedding. In: International con-
ference on world wide web, WWW ’15, pp 1067–1077

	19.	 Traud AL, Mucha PJ, Porter MA (2012) Social structure of face-
book networks. Physica A: Stat Mech Appl 391(16):4165–4180

	20.	 Tu C, Zhang W, Liu Z, Sun M (2016) Max-margin deepwalk:
discriminative learning of network representation. In: IJCAI, pp
3889–3895

	21.	 Wang D, Cui P, Zhu W (2016) Structural deep network embed-
ding. In: SIGKDD international conference on knowledge discov-
ery and data mining, KDD ’16, pp 1225–1234

	22.	 Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community
preserving network embedding. In: AAAI conference on artificial
intelligence

	23.	 Yang C, Liu Z, Zhao D, Sun M, Chang EY (2015) Network rep-
resentation learning with rich text information. In: International
conference on artificial intelligence, IJCAI’15, pp 2111–2117

	24.	 Zaki MJ, Meira W Jr (2014) Data mining and analysis: funda-
mental concepts and algorithms. Cambridge University Press,
Cambridge

	25.	 Zhang B, Al Hasan M (2017) Name disambiguation in
anonymized graphs using network embedding. In: ACM on
conference on information and knowledge management, pp
1239–1248

	26.	 Zhang D, Yin J, Zhu X, Zhang C (2017) User profile preserving
social network embedding. In: International joint conference on
artificial intelligence, IJCAI-17, pp 3378–3384

	Neural-Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding
	Abstract
	1 Introduction
	1.1 Our Solution and Contribution

	2 Related Work
	3 Problem Statement
	4 Neural-Brane: Attributed Network Embedding Framework
	4.1 Embedding Layer
	4.1.1 Encoding Attributional Information
	4.1.2 Encoding Network Topology
	4.1.3 Integration Component

	4.2 Hidden Layer
	4.3 Output and BPR Layers
	4.4 Model Inference and Optimization
	4.5 Model Complexity Analysis

	5 Experiments and Results
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Baseline Comparison
	5.1.3 Parameter Setting and Implementation Details

	5.2 Quantitative Results
	5.2.1 Node Classification
	5.2.2 Visualization and Node Clustering

	5.3 Analysis of Parameter Sensitivity and Algorithm Convergence
	5.4 Effect of Pooling Strategy and Number of Training Triples
	5.5 Scalability Study
	5.6 Effectiveness of BPR Loss and Contribution of Other Neural-Brane layers

	6 Conclusion
	References

