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Abstract
Network embedding methodologies, which learn a distributed vector representation for each vertex in a network, have 
attracted considerable interest in recent years. Existing works have demonstrated that vertex representation learned through 
an embedding method provides superior performance in many real-world applications, such as node classification, link 
prediction, and community detection. However, most of the existing methods for network embedding only utilize topo-
logical information of a vertex, ignoring a rich set of nodal attributes (such as user profiles of an online social network, or 
textual contents of a citation network), which is abundant in all real-life networks. A joint network embedding that takes 
into account both attributional and relational information entails a complete network information and could further enrich 
the learned vector representations. In this work, we present Neural-Brane, a novel Neural Bayesian Personalized Ranking 
based Attributed Network Embedding. For a given network, Neural-Brane extracts latent feature representation of its vertices 
using a designed neural network model that unifies network topological information and nodal attributes. Besides, it utilizes 
Bayesian personalized ranking objective, which exploits the proximity ordering between a similar node pair and a dissimilar 
node pair. We evaluate the quality of vertex embedding produced by Neural-Brane by solving the node classification and 
clustering tasks on four real-world datasets. Experimental results demonstrate the superiority of our proposed method over 
the state-of-the-art existing methods.
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1  Introduction

The past few years have witnessed a surge in research on 
embedding the vertices of a network into a low-dimensional, 
dense vector space. The embedded vector representation 
of the vertices in such a vector space enables effortless 

invocation of off-the-shelf machine learning algorithms, 
thereby facilitating several downstream network mining 
tasks, including node classification [20], link prediction [9], 
community detection [22], job recommendation [6], and 
entity disambiguation [25]. Most existing network embed-
ding methods, including DeepWalk [15], LINE [18], Node-
2Vec [9], and SDNE [21], utilize the topological informa-
tion of a network with the rationale that nodes with similar 
topological roles should be distributed closely in the learned 
low-dimensional vector space. While this suffices for node 
embedding of a bare-bone network, it is inadequate for most 
of today’s network datasets which include useful information 
beyond link connectivity. Specifically, for most of the social 
and communication networks, a rich set of nodal attributes 
is typically available, and more importantly, the similarity 
between a pair of nodes is dictated significantly by the simi-
larity of their attribute values. Yet, the existing embedding 
models do not provide a principled approach for incorporat-
ing nodal attributes into network embedding and thus fail to 
achieve the performance boost that may be obtained through 
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modeling attribute based nodal similarity. Intuitively, joint 
network embedding that considers both attributional and 
relational information could entail complementary informa-
tion and further enrich the learned vector representations.

We provide a few examples from real-life networks to high-
light the importance of vertex attributes for understanding 
the role of the vertices and to predict their interactions. For 
example, users on social websites contain biographical pro-
files like age, gender, and textual comments, which dictate 
who they befriend with and what are their common interests. 
In a citation network, each scientific paper is associated with 
a title, an abstract, and a publication venue, which largely 
dictates its future citation patterns. In fact, nodal attributes 
are specifically important when the network topology fails to 
capture the similarity between a pair of nodes. For example, in 
academic domain, two researchers who write scientific papers 
related to “machine learning” and “information retrieval” are 
not considered to be similar by existing embedding methods 
(say, DeepWalk or LINE) unless they are co-authors or they 
share common collaborators. In such a scenario, node attrib-
utes of the researchers (e.g., research keywords) are crucial for 
compensating for the lack of topological similarity between 
the researchers. In summary, by jointly considering the attrib-
ute homophily and the network topology, more informative 
node representations can be expected.

Recently, a few works have been proposed which con-
sider attributed network embedding [12, 23, 26]; however, 
the majority of these methods use a matrix factorization 
approach, which suffers from some crucial limitations. For 
example, earliest among these works is Text-Associated 
DeepWalk (TADW) [23], which incorporates the text fea-
tures of nodes into DeepWalk by factorizing a matrix � 
constructed from the summation of a set of graph transition 
matrices. But, SVD based matrix factorization is both time 
and memory consuming, which restricts TADW to scale up 
to large datasets. Furthermore, obtaining an accurate matrix 
� for factorization is difficult and TADW instead factor-
izes an approximate matrix, which reduces its representation 
capacity. Huang et al. [12] proposed another matrix factori-
zation (MF) based method, known as Accelerated Attrib-
uted Network Embedding (AANE). It suffers from the same 
limitation as TADW. Another crucial limitation of the above 
methods is that they have a design matrix which they factor-
ize, but such a matrix cannot deal with nodal attributes of 
rich types. In summary, the representation power of a matrix 
factorization based method is found to be poorer than a neu-
ral network based method, as we will show in the experiment 
section of this paper.

We found two most recent attributed network embed-
ding methods, GraphSAGE and Graph2Gauss, which use 
deep neural network methods. To generate embedding of a 
node, GraphSAGE [10] aggregates embedding of its multi-
hope neighbors using a convolution neural network model. 

GraphSAGE has a high time complexity, besides such ad 
hoc aggregation may introduce noise which adversely affects 
its performance. Recently, Bojchevski et al. [2] proposed 
the Graph2Gauss (G2G), where they embed each node as 
a Gaussian distribution. G2G uses a neural network based 
deep encoder to process the nodal attributes and obtains 
an intermediate hidden representation, which is then used 
to generate the mean vector and the covariance matrix of 
the learned Gaussian distribution of a node. As a result, in 
G2G’s learning, the interaction between the attribute infor-
mation and the topology information of a node is poor. On 
the other hand, the learning pipeline of our proposed Neural-
Brane enables effective information exchange between the 
attribute and topology of a node, making it much superior 
than G2G while learning embedding for attributed networks. 
It is worth noting that some recent works have proposed 
semi-supervised attributed network embedding consider-
ing the availability of node labels [13, 14], but our focus in 
this work is unsupervised attributed network embedding, for 
which vertex labels are not available.

1.1 � Our Solution and Contribution

In this paper, we present Neural-Brane, a novel method for 
attributed network embedding. For a vertex of the input 
network, Neural-Brane infuses its network topological 
information and nodal attributes by using a custom neural 
network model, which returns a single representation vec-
tor capturing both the aspects of that vertex. The loss func-
tion of Neural-Brane utilizes BPR [16] to capture attribute 
and topological similarities between a pair of nodes in their 
learned representation vectors. Specifically, the BPR objec-
tive elevates the ranking of a vertex-pair having similar 
attributes and topology by embedding the vertices in close 
proximity in the representation space, in comparison with 
other vertex-pairs which are not similar. We summarize the 
key contributions of this work as follows:

1.	 We propose Neural-Brane, a custom neural network 
based model for learning node embedding vectors by 
integrating local topology structure and nodal attributes. 
The source code (with datasets) of the Neural-Brane is 
available at: https​://git.io/fNF6X​.

2.	 Neural-Brane has a novel neural network architecture 
which enables effective mixing of attribute and struc-
ture information for learning node representation vectors 
capturing both the aspects of a node. Besides, it uses 
Bayesian personalized ranking as its objective function, 
which is superior than cross-entropy based objective 
function used in several existing network embedding 
works.

3.	 Extensive validations on four real-world datasets dem-
onstrate that Neural-Brane consistently outperforms 

https://git.io/fNF6X
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10 state-of-the-art methods, which results in up to 25% 
Macro-F1 lift for node classification and more than 10% 
NMI gain for node clustering, respectively.

2 � Related Work

There is a large body of works on representation learning 
on graphs (a.k.a. network embedding). Well known among 
these methods are DeepWalk [15] and Node2Vec [9], both 
of which capture local topology around a node through 
sequences of vertices obtained by uniform or biased ran-
dom walk, and then use the Skip-Gram language model for 
obtaining the representation of each vertex. LINE [18] com-
putes the similarity of a node to other nodes as a probability 
distribution by computing first and second order proximi-
ties and designs a KL divergence based objective function 
which minimizes the divergence between empirical distribu-
tion from data and actual distribution from the embedding 
vectors. GraRep [3] is a matrix factorization based approach 
that leverages both local and global structural information. 
Furthermore, a few neural network based approaches are 
proposed for network embedding, such as [4, 5, 21] . Inter-
ested readers can refer to the survey articles in  [8, 11] , 
which present a taxonomy of various network embedding 
methods in the existing literature.

Most of the aforementioned works only investigate 
the topological structure for network embedding, which 
is in fact only a partial view of an attributed network. To 
bridge this gap, a few attributed network embedding based 
approaches [7, 12, 14, 17, 23, 26] are proposed. The gen-
eral philosophy of such works is to integrate nodal features, 
such as text information and user profile, into topology-
oriented network embedding model to enhance the perfor-
mance of downstream network mining tasks. For example, 
TADW [23] performs low-rank matrix factorization con-
sidering graph structure and text features. Furthermore, 
TriDNR [14] adopts a two-layer neural networks to jointly 
learn the network representations by leveraging internode, 
node–word, and label–word relationships. Different from 
the existing methods, our proposed unsupervised embed-
ding method (Neural-Brane) utilizes a designed neural net-
work architecture and a novel Bayesian personalized ranking 
based loss function to learn better network representations.

3 � Problem Statement

Throughout this paper, scalars are denoted by lowercase 
alphabets (e.g., n). Vectors are represented by boldface low-
ercase letters (e.g., � ). Bold uppercase letters (e.g., � ) denote 
matrices, and the ith row of a matrix � is denoted as �i . The 
transpose of the vector � is denoted by �T . The dot product 

of two vectors is denoted by ⟨�, �⟩ . ||�||F is the Frobenius 
norm of matrix � . Finally, calligraphic uppercase letter (e.g., 
X  ) is used to denote a set and |X| is used to denote the car-
dinality of the set X .

Let G = (V, E,�) be an attributed network, where V is a 
set of n nodes, and E is a set of edges, and � is a n × m binary 
attribute matrix such that the row �i denotes a row attribute 
vector associated with node i in G. Each edge (i, j) ∈ E is 
associated with a weight wij . The neighbors of node i are 
represented as N(i) . m is the number of node attributes in 
� . We use A(i) to denote the nonzero attribute set of node i.

The attributed network embedding problem is for-
mally defined as follows: Given an attributed network 
G = (V, E,�) , we aim to obtain the representation of its ver-
tices as a n × d matrix � = [�T

1
, ..., �T

n
]T ∈ IR

n×d , where �i is 
the row vector representing the embedding of node i. The 
representation matrix � should preserve the node proximity 
from both network topological structure E and node attrib-
utes � . Eventually, � serves as feature representation for 
the vertices of G, as such, that they can be used for various 
downstream network mining tasks.

4 � Neural‑Brane: Attributed Network 
Embedding Framework

In this section, we discuss the proposed neural Bayesian 
personalized ranking model for attributed network embed-
ding. The model uses a neural network architecture with 
embedding layer, hidden layer, output layer, and BPR layer 
from bottom to top, as illustrated in Fig. 1. Specifically, the 
embedding layer learns a unified vector representation of a 
node from the vector representation of its nodal attributes 
and neighbors; the hidden layer applies nonlinear dimen-
sionality reduction over the embedding vectors of the nodes; 
the output layer and the BPR layer enable model inference 
through back-propagation.

4.1 � Embedding Layer

The embedding layer has two embedding matrices � and �′ ; 
each row of � is a d1-dimensional vector representation of 
an attribute, and each row of �′ is a d2-dimensional vector 
representation of a vertex (both d1 and d2 are user-defined 
parameter). These matrices are updated iteratively during 
the learning process. For a given vertex u, embedding layer 
produces u’s latent representation vector �u by learning from 
embedding vectors of u’s attributes and neighbors, i.e., cor-
responding rows of � and �′ , respectively; thus, the neigh-
bors and attributes of u are jointly involved in the construc-
tion of u’s latent representation vector ( �u ), which enables 
Neural-Brane to bring the latent representation vectors of 
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nodes with similar attributes and neighborhood in close 
proximity in the latent space.

We illustrate the vector construction process using a toy 
attributed graph in Fig. 2. Given the vertex b from the toy 
graph, the embedding layer first takes its attribute and adja-
cency vectors (from � and �′ ) as input and then generates its 
corresponding attributional and nodal embedding matrices 
( �(attr)

b
 and ��(nbr)

b
 ) by using the CONCAT-LOOKUP(⋅) func-

tion. After that, attributional and neighborhood embedding 
vectors are obtained from �(attr)

b
 and ��(nbr)

b
 by using the max 

pooling operation, respectively. Finally, the learned attri-
butional and neighborhood embedding vectors are concat-
enated together to obtain the final embedding representation 
of the vertex b. Below we provide more details of the opera-
tions in embedding layer.

4.1.1 � Encoding Attributional Information

Given a node u ∈ V and the attribute matrix � , �u ∈ IR
1×m 

is � ’s row corresponding to u’s binary attribute vector. We 
apply a row-wise concatenation based embedding lookup 
layer to transform �u into a latent matrix, �(attr)

u
 , shown as 

follows:

where � ∈ IR
m×d1 is the attribute embedding matrix in which 

each row is a d1 (user-defined parameter) sized vector repre-
sentation of an attribute. Lookup is performed by CONCAT-
LOOKUP(⋅) function which first performs a row projection 

(1)�
(attr)
u

= CONCAT-LOOKUP(�, �u),

on � by selecting the rows corresponding to the attribute 
set A(u) and then stacks the selected vectors row-wise into 
the matrix �(attr)

u
∈ IR

|A(u)|×d1 . Then we apply a max pooling 
operation on the generated �(attr)

u
 matrix in order to transform 

it into a single vector. Specifically, max pooling operation 
retains the most informative signal by extracting the largest 
value in each dimension (i.e., column) of the matrix �(attr)

u
 

to obtain �attr
u

.

where �attr
u

∈ IR
1×d1 is the latent vector representation of 

node u based on its attributional signals and MP(⋅) denotes 
the max pooling operation.

4.1.2 � Encoding Network Topology

Given a node u, we describe its neighborhood by using a 
binary adjacency vector, denoted as �u ∈ IR

1×n , in which 
u’s neighbors are set to 1, and the rest of entries are set as 
0. Similar to the operations we use for encoding the attri-
butional information, we apply a row-wise concatenation 
based lookup layer to transform �u into a latent matrix ��(nbr)

u
 

and then apply max pooling operation on the obtained latent 
matrix. Thus,

(2)�
attr

u
= MP(�(attr)

u
),

(3)�
�(nbr)
u

= CONCAT-LOOKUP(��, �u)
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Fig. 1   Neural-Brane architecture. Given a node u, �u is its binary 
attribute vector and �u is its adjacency vector. Our training uses node 
triplets (u, i, j), such that (u, i) ∈ E and (u, j) ∉ E
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Fig. 2   Mechanism of the embedding layer for the vertex b of a toy 
attributed graph. The graph contains 5 vertices and 6 edges, where 
each vertex is associated with a collection of nodal attributes. For 
example, vertex b is connected to vertices {a, c, d} and associated 
with attributes {x2, x6} , respectively. The cardinality of the attribute 
set {x1,⋯ , x7} is 7
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where �� ∈ IR
n×d2 is the neighborhood embedding matrix 

for lookup (similar to matrix � ), and ��(nbr)
u

∈ IR
|N(u)|×d2 is 

the obtained latent matrix generated from the CONCAT-
LOOKUP(⋅) function. Moreover, �nbr

u
∈ IR

1×d2 obtained 
from the MP(⋅) operation is the latent vector representation 
of node u based on its neighborhood topology.

4.1.3 � Integration Component

Once we obtain the vector representation of node u from 
both its attributional information and topological structure 
as developed in Eqs. 1, 2, 3, and 4, we further integrate both 
latent vectors into a unified vector representation by vector 
concatenation, shown as follows:

where �u ∈ IR
1×d ( d1 + d2 = d ) and “||” denotes the vector 

concatenation operation.

4.2 � Hidden Layer

Given the obtained embedding vector �
�
∈ IR

1×d for node u 
in the attributed network G, the hidden layer aims to trans-
form its embedding vector into another representation �u , in 
which signals from attributes and neighborhood of a vertex 
interact with each other. Formally, given �u , the hidden layer 
produces �u ∈ IR

1×h by the following formula:

Here we use rectified linear function ReLU(x), defined 
as max(0, x) , as the activation function for achieving better 
convergence speed. Parameters � ∈ IR

h×d and � ∈ IR
h×1 

are weights and bias for the hidden layer, respectively; h is 
a user-defined parameter denoting the number of neurons in 
the hidden layer. It is worth mentioning that in the hidden 
layer, all the nodes share the same set of parameters {�,�} , 
which enables information sharing across different vertices 
(see the box denoted as “hidden layer” in Fig. 1).

4.3 � Output and BPR Layers

Given a node pair u and i, we use their corresponding repre-
sentations �u and �i from hidden layer (Eq. 6) as input for the 
output layer. The task of this layer is to measure the similar-
ity score between a pair of vertices by taking the dot product 
of their representation vectors. Since this computation uses 
the vector representation of the vertices from the hidden 
layer, it encodes both attribute similarity and neighborhood 
similarity jointly. The similarity score between vertices u 
and i, defined as sui , is calculated as ⟨�u, �i⟩.

(4)�
nbr

u
= MP(��(nbr)

u
),

(5)�u = �
attr

u
|| �nbr

u
∶= [�attr

u
�
nbr

u
],

(6)�
T
u
= ReLU(��

T
u
+ �)

BPR layer implements the Bayesian personalized ranking 
objective. For the embedding task, the ranking objective is 
that the neighboring nodes in the graph should have more 
similar vector representations in the embedding space than 
non-neighboring nodes. For example, the similarity score 
between two neighboring vertices u and i should be larger 
than the similarity score between two non-neighboring 
nodes u and j. As shown in Fig. 1, given the vertex triplet 
(u, i, j), we model the probability of preserving ranking order 
sui > suj  using the sigmoid function �(x) = 1

1+e−x
 . 

Mathematically,

As we observe from Eq.  7, the larger the difference 
between sui and suj , the more likely the ranking order sui > suj 
is preserved. By assuming that all the triplet based rank-
ing orders generated from the graph G to be independent, 
the probability of all the ranking orders being preserved is 
defined as follows:

where D represents training triplet sets generated from 
G and i >u j is a shorthand notation denoting sui > suj ; the 
notation is motivated from the concept that i is larger than j 
considering the partial-order relation >u.

The goal of our attributed network embedding is to maxi-
mize the expression in Eq. 8. For the computational con-
venience, we minimize the sum of negative likelihood loss 
function, which is shown as follows:

where � = {�,��,�,�} are model parameters used in all 
different layers and � ⋅ ||�||2

F
 is a regularization term to pre-

vent model overfitting.

4.4 � Model Inference and Optimization

We employ the back-propagation algorithm by utilizing 
mini-batch gradient descent to optimize the parameters 
� = {�,��,�,�} in our model. The first step of mini-batch 
gradient descent is to sample a batch of triplets from G. 
Specifically, given an arbitrary node u, we sample one of its 
neighbors i, i.e., i ∈ N(u) , with the probability proportional 
to the edge weight wij . On the other hand, we sample its 
non-neighboring node j, i.e., j ∉ N(u) , with the probabil-
ity proportional to the node degree in the graph. Next, for 
each mini-batch training triplet, we compute the derivative 

(7)
P
�
sui > suj��u, �i, �j

�
= 𝜎

�
sui − suj

�

=
1

1 + e
−

�
⟨��,�i⟩−⟨�u,�j⟩

�

(8)
∏

(u,i,j)∈D

P(i >u j) =
∏

(u,i,j)∈D

𝜎
(
sui − suj

)
,

(9)L(�) = min
�

−
∑

(u,i,j)∈D

ln �
(
sui − suj

)
+ � ⋅ ||�||2

F
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and update the corresponding parameters � . For that, first 
we find the gradient of the objective function in Eq. 9 with 
respect to model parameter

Now, for each model parameter we find �

��
(sui − suj) 

using the chain rule. In particular, by back-propagating 
from Bayesian personalized ranking layer to hidden layer, 
we update the gradients w.r.t. weight matrix � and bias vec-
tor � accordingly. Then in the embedding layer, we update 
the gradients of the corresponding embedding vectors (i.e., 
rows) in {�,��} associated with all the neighboring nodes 
and attributes involved in each mini-batch training triplet, 
respectively. Mathematically,

 

where � is the learning rate. In addition, we initialize all 
model parameters � by using a Gaussian distribution with 
0 mean and 0.01 standard deviation. The pseudo-code of 
the proposed Neural-Brane framework is summarized in 
Algorithm 1.

4.5 � Model Complexity Analysis

For the time complexity analysis, given the sampled train-
ing triplet set D , the total costs of calculating and updat-
ing gradients of L w.r.t. corresponding embedding vectors 
involved in {�,��} are O(d) . Similarly, the total costs of 

(10)

�L(�)

��
= −

∑

(u,i,j)∈D

� ln �
(
sui − suj

)

��
+ �

�||�||2
F

��

= −
∑

(u,i,j)∈D

(
1 − �(sui − suj)

)
⋅

�

��

(
sui − suj

)

+ 2�||�||F

(11)�
t+1 = �

t − � ×
�L(�)

��

computing and updating gradients of L w.r.t. parameters 
{�,�} in the hidden layer are O(hd + h) . To generate train-
ing mini-batch, we use degree proportional sampling and its 
time complexity is O(n) . Therefore, the total computational 
complexity of the proposed methodology for Neural-Brane 
is |D| ∗

(
O(d) +O(hd + h) +O(n)

)
 . As time complexity of 

the Neural-Brane is linear to the embedding size, hidden 
layer dimension, and input graph size, it is extremely fast. 
For example, it takes around 15 minutes to learn embedding 
for our largest dataset Arnetminer (see Table 1). We can 
easily observe that the space complexity for the proposed 
Neural-Brane is proportional to input graph size and embed-
ding size, i.e., O(n ⋅ d).

5 � Experiments and Results

In this section, we first introduce the datasets and baseline 
comparisons used in this work. Then we thoroughly evaluate 
our proposed Neural-Brane through two downstream data 
mining tasks (node classification and clustering) on four 
real-world networks, for which node attributes are available. 
Finally, we analyze the quantitative experimental results and 
investigate parameter sensitivity, convergence behavior, and 
the effect of pooling strategy of Neural-Brane.

Table 1   Statistics of four real-world datasets

Dataset # Nodes # Edges # Attributes # Classes

CiteSeer 3312 4732 3703 6
Arnetminer 15,753 109,548 135,647 5
Caltech36 671 15,645 64 2
Reed98 895 17,631 64 2
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5.1 � Experimental Setup

5.1.1 � Datasets

We perform experiments on four real-world datasets, whose 
statistics are shown in Table 1. The largest among these net-
works has around 15.75 K vertices and 109.5 K edges. Note 
that publicly available networks exist, which are larger than 
the networks that we use in this work, but those larger net-
works are neither attributed nor they have class label for the 
vertices, so we cannot use those in our experiment. Nev-
ertheless, our largest dataset Arnetminer has more nodes, 
edges, and attributes than datasets used by recent attribute 
embedding papers [23, 26]. More description of the datasets 
is given below.

CiteSeer1 is a citation network, in which nodes refer 
to papers and links refer to citation relationship among 
papers. Selected keywords from the paper are used as nodal 
attributes. Additionally, the papers are classified into 6 cat-
egories according to its research domain, namely artificial 
intelligence (AI), database (DB), information retrieval (IR), 
machine learning (ML), human computer interaction (HCI), 
and multi-agent analysis.

Arnetminer2 is a paper relation network consisting of 
scientific publications from 5 distinct research areas. Spe-
cifically, we select a list of representative conferences and 
journals from each of them. (1) Data Mining (KDD, SDM, 
ICDM, WSDM, PKDD); (2) Medical Informatics (JAMIA, 
J. of Biomedical Info., AI in Medicine, IEEE Tran. on Medi-
cal Imaging, IEEE Tran. on Information and Technology 
in Biomedicine); (3) Theory (STOC, FOCS, SODA); (4) 
Computer Vision and Visualization (CVPR, ICCV, VAST, 
TVCG, IEEE Visualization and Information Visualization); 
(5) Database (SIGMOD, VLDB, ICDE). Authors and key-
words similarity between two papers are used for building 
edges. Keywords from paper title and abstract are used as 
attributes.

Caltech36 and Reed98  [19] are two university Face-
book networks. Specifically, each node represents a user 
from the corresponding university and edge represents user 
friendship. The attributes of each node are represented by 
a 64-dimensional one-hot vector based on gender, major, 
second major/minor, dorm/house, and year. We use student/
faculty status of a node as the class label.

5.1.2 � Baseline Comparison

To validate the benefit of our proposed Neural-Brane, we 
compare it against 10 different methods. Among all the 

competing methods, DeepWalk, LINE, and Node2Vec are 
topology-oriented network embedding approaches. NNMF, 
DeepWalk + NNMF, GraphSAGE, PTE-KL, TADW, 
AANE, and G2G are state of the arts for combining both 
network structure and nodal attributes for network repre-
sentation learning. Note that PTE-KL is a semi-supervised 
embedding approach, and we hold the label information out 
for a fair comparison.

	 1.	 DeepWalk [15]: It utilizes Skip-Gram based language 
model to analyze the truncated uniform random walks 
on the graph.

	 2.	 LINE [18]: It embeds the network into a latent space by 
leveraging both first-order and second-order proximi-
ties of each node.

	 3.	 Node2Vec  [9]: Similar to DeepWalk, Node2Vec 
designs a biased random walk procedure for network 
embedding.

	 4.	 Non-Negative Matrix Factorization (NNMF): The 
model captures both node attributes and network struc-
ture to learn topic distributions of each node.

	 5.	 DW+NNMF: It simply concatenates the vector repre-
sentations learned by DeepWalk and NNMF.

	 6.	 GraphSAGE [10]: GraphSAGE presents an inductive 
representation learning framework that leverages node 
feature information (e.g., text attributes) to efficiently 
generate node embeddings in the network.

	 7.	 PTE-KL [17]: Predictive Text Embedding framework 
aims to capture the relations of paper–paper and paper–
attribute under matrix factorization framework. The 
objective is based on KL divergence between empirical 
similarity distribution and embedding similarity distri-
bution.

	 8.	 TADW [23]: Text-Associated DeepWalk combines the 
text features of each node with its topology information 
and uses the MF version of DeepWalk.

	 9.	 AANE [12]: Accelerated Attributed Network Embed-
ding learns low-dimensional representation of nodes 
from network linkage and content information through 
a joint matrix factorization.

	10.	 G2G [2]: Graph2Gauss learns node representation such 
that each node vector is a Gaussian distribution.

5.1.3 � Parameter Setting and Implementation Details

There are a few user-defined hyper-parameters in our pro-
posed embedding model. We fix the embedding dimension 
d = 150 (same for all baseline methods) with d1 = d2 = 75 . 
For the number of neurons in hidden layer h, we set it to be 
150. For the regularization coefficient � in the embedding 
model (see Eq. 9), we set it as 0.00005. In addition to that, 

1  https​://linqs​.soe.ucsc.edu/data.
2  https​://amine​r.org/topic​_paper​_autho​r.

https://linqs.soe.ucsc.edu/data
https://aminer.org/topic_paper_author
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we fix the learning rate � = 0.5 (see Eq. 11) and batch size 
to be 100 during the model learning and optimization. For 
baseline methods such as GraphSAGE, PTE-KL, AANE, 
G2G and others, we select learning rate � from the set 
{0.01, 0.05, 0.1, 0.5}3 using grid search. Similarly for PTE-
KL, TADW and other baseline methods regularization coef-
ficient � is selected from the set {0.01, 0.001, 0.0001} . For 
random walk based baselines (DeepWalk and Node2Vec), 
we select the best walk length from the set {20, 40, 60, 80} . 
For the rest of hyper-parameters, we use default parameter 
values as suggested by their original papers.

5.2 � Quantitative Results

5.2.1 � Node Classification

For fair comparison between network embedding methods, 
we purposely choose a linear classifier to control the impact 
of complicated learning approaches on the classification 
performance. Specifically, we treat the node representations 

learned by different approaches as features and train a logis-
tic regression classifier for multi-class/binary classification. 
In each dataset, p% ∈ {30%, 50%, 70%} of nodes are ran-
domly selected as training set and the rest as test set. We 
use the widely used metric Macro-F1 [24] for classifica-
tion assessment. Each method is executed 10 times, and the 
average value is reported. For Neural-Brane, we also report 
standard deviation. For better visual comparison, we high-
light the best Macro-F1 score of each training ratio (p) with 
bold font.

Table  2 shows results for node classification, where 
each column is an embedding method and rows represent 
different train splits (p). As we observe from Table 2, per-
formance of the last four (PTE-KL, TADW, AANE, G2G) 
baseline methods is highly competitive among each other. 
But, our proposed Neural-Brane consistently outperforms all 
these and other baseline methods under all training ratios. 
Moreover, the overall performance improvement that our 
Neural-Brane delivers over the second best method is sig-
nificant. For example, in Citeseer dataset, when training ratio 
p ranges from 30% to 70% , Neural-Brane outperforms the 
G2G by 8.8% , 8.6% , 8.4% in terms of Macro-F1, respectively. 
Furthermore, the improvement over G2G is statistically sig-
nificant (paired t-test with p-value ≪ 0.01). The relatively 

Table 2   Quantitative results of Macro-F1 between our proposed Neural-Brane and other baselines for the node classification task using logistic 
regression on various datasets (embedding dimension = 150)

*GraphSAGE for Arnetminer is not able to complete after 2 days

Citeseer

Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.4952 0.4304 0.5462 0.4367 0.5185 0.4418 0.5456 0.5756 0.5684 0.5860 �.����± .0075

50% 0.5199 0.4590 0.5632 0.4619 0.5598 0.4621 0.5647 0.5900 0.5844 0.5939 �.����± .0026

70% 0.5318 0.4600 0.5743 0.4711 0.5780 0.4662 0.5732 0.6106 0.5996 0.6003 �.����± .0115

Arnetminer

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE* PTE-KL TADW AANE G2G Neural-Brane

30% 0.7281 0.5364 0.7729 0.6087 0.6968 – 0.5341 0.7969 0.7902 0.8062 �.����± .0016

50% 0.7336 0.5422 0.7837 0.6541 0.7016 – 0.5426 0.8031 0.8009 0.8145 �.����± .0017

70% 0.7389 0.5485 0.7877 0.6748 0.7044 – 0.5519 0.8079 0.8065 0.8186 �.����± .0034

Caltech36

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7824 0.8023 0.7859 0.5243 0.8480 0.7233 0.8701 0.8748 0.8527 0.8523 �.����± .0121

50% 0.7949 0.8079 0.8080 0.5953 0.8552 0.7712 0.8697 0.8866 0.8843 0.8691 �.����± .0134

70% 0.8217 0.8112 0.8131 0.6445 0.8712 0.8220 0.8786 0.8929 0.9008 0.8977 �.����± .0139

Reed98

 Train% DeepWalk LINE Node2Vec NNMF DW+NNMF GraphSAGE PTE-KL TADW AANE G2G Neural-Brane

30% 0.7662 0.7195 0.7682 0.6472 0.8055 0.6325 0.8333 0.8460 0.8285 0.7515 �.����± .0105

50% 0.7774 0.7195 0.7805 0.7123 0.8275 0.7012 0.8413 0.8519 0.8433 0.7772 �.����± .0176

70% 0.7927 0.7446 0.7925 0.7695 0.8321 0.7682 0.8590 0.8636 0.8660 0.7925 �.����± .0146

3  For GraphSAGE, we also check smaller values of � , i.e., 
{10−4, 10−5, 10−6} as suggested in the paper [10].



127Neural‑Brane: Neural Bayesian Personalized Ranking for Attributed Network Embedding﻿	

1 3

good performance of our proposed Neural-Brane across 
various training ratios is due to the fact that our proposed 
neural Bayesian personalized ranking framework is able to 
generate high-quality latent features by capturing crucial 
ordering information between nodes and incorporating nodal 
attributes and network topology into network embedding. 
Furthermore, BPR is shown to be better suited than other 
loss functions, such as point-wise square loss in TADW and 
KL divergence based objective in LINE and PTE-KL, for 
placing similar nodes in the embedding space for the down-
stream node classification task.

Among the competing methods, topology-oriented net-
work embedding approaches such as LINE and DeepWalk 
perform fairly poor on all datasets. This is mainly because 
the network structure is rather sparse and only contains lim-
ited information. On the other hand, TADW is much better 
than DeepWalk due to the fact that textual contents contain 
richer signals compared to the network structure. When 
concatenating the embedding vectors from DeepWalk and 
NNMF, the classification performance is relatively improved 
compared to a single DeepWalk. However, the naive combi-
nation between DeepWalk and NNMF is far from optimal, 
compared to our proposed Neural-Brane. Note that Graph-
SAGE for Arnetminer dataset is not able to complete after 2 

days on contemporary server having 64 cores with 2.3 GHz 
and 132 GB memory.

5.2.2 � Visualization and Node Clustering

The primary goal of graph embedding approaches is to put 
similar nodes closer in their corresponding latent space; 
hence, a desirable embedding method should generate clus-
ters of similar nodes in the embedding space. Visualization 
for a large number of classes in two-dimensional space is 
impractical. Instead, in Fig. 3, we plot 2D representation 
of learned vector representations for Caltech36 and Reed98 
datasets. Note that both of these datasets contain only 2 
classes and hence provide interpretable visualization. Specif-
ically, we plot embedding representations of Neural-Brane 
along with two best competing methods, namely TADW and 
AANE. These figures clearly demonstrate that Neural-Brane 
provides better discrimination of classes through clustering 
in the latent space compared to both TADW and AANE.

For the other two larger datasets (CiteSeer and Arnet-
miner), we use k-means clustering approach to the learned 
vector representations of nodes and utilize both Purity 
and Normalized Mutual Information (NMI) [24] to assess 
the quality of clustering results. Furthermore, we match 
the ground truth number of clusters as input for running 

(a) Representation of TADW
for Caltech36

(b) Representation of AANE
for Caltech36

(c) Representation of Neural-
Brane for Caltech36

(d) Representation of TADW
for Reed98

(e) Representation of AANE
for Reed98

(f) Representation of Neural-
Brane for Reed98

Fig. 3   Visualization comparison among various embedding methodologies for Caltech36 and Reed98 datasets
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k-means, execute the clustering process 10 times to allevi-
ate the sensitivity of centroid initialization, and report the 
average results.

The clustering results for both CiteSeer and Arnetminer 
datasets are depicted in Fig. 4. As we can see, our proposed 
Neural-Brane consistently achieves the best clustering 
results in contrast to all competing baselines. For example, 
in Citeseer dataset, our proposed Neural-Brane achieves 
0.3524 NMI. However, the best competing method PTE-
KL only obtains 0.2653 NMI, indicating more than 32.8% 
gains. Similarly, for Arnetminer dataset, Neural-Brane 
obtains 34.5% improvements over the best competing 
approach DeepWalk in terms of NMI. The possible expla-
nation for higher performance of Neural-Brane could be due 
to the fact that our proposed Bayesian ranking formulation 
directly optimizes the pair-wise distance between similar and 

dissimilar nodes, thus making their corresponding vectors 
cluster-aware in the embedded space.

5.3 � Analysis of Parameter Sensitivity and Algorithm 
Convergence

We conduct experiments to demonstrate how the embed-
ding dimension affects the node classification task 
using our proposed Neural-Brane. Specifically, we vary 
the number of embedding dimension parameter d as 
{50, 100, 150, 200, 250, 300} and set the training ratio 
p = 70% . We report the Macro-F1 results on all four data-
sets, which is shown in Fig.  5a. As we observe, as the 
embedding dimension d increases, the classification perfor-
mance in terms of Macro-F1 first increases and then tends 
to stabilize. The possible explanation could be that when 

(a) CiteSeer Dataset (b) Arnetminer Dataset

Fig. 4   Performance of node clustering

(a) The effect of embedding dimension for
node classification

(b) Convergence analysis of the ranking ob-
jective function shown in Equation 9

Fig. 5   Analysis of the embedding dimension and convergence
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the embedding dimension is too small, the embedding rep-
resentation capability is not sufficient. However, when the 
embedding dimension becomes sufficiently large, it captures 
all necessary information from the data, leading to the stable 
classification performance. Furthermore, we investigate the 
convergence trend of Neural-Brane. As shown in Fig. 6b, 
Neural-Brane converges approximately within 10 epochs 
and achieves promising convergence results in terms of the 
objective function value on all four datasets.

5.4 � Effect of Pooling Strategy and Number 
of Training Triples

We investigate the effect of the pooling strategy in the 
embedding layer for the task of node classification. For 
the comparison, we consider to take the sum rather than 
max pooling and hold the rest of neural architecture and 

hyper-parameter settings constant. We report the Macro-
F1 results on all four datasets with training ratio p = 70% , 
which is shown in Fig. 7a. As we observe, max pooling con-
sistently outperforms the alternative sum pooling strategy 
for the task of node classification across all datasets. The 
possible explanation is due to the fact that the max pool-
ing operation returns the strongest signal for each embed-
ding dimension, which alleviates noisy signals. On the other 
hand, the sum pooling operation considers accumulated sig-
nals from each input embedding dimension, which leads to 
inaccurate information aggregation.

Finally, to verify the efficiency of the Neural-Brane, we 
study how embedding generation time and node classifica-
tion performance vary with count of training triples. For 
that, we use Arnetminer dataset and plot macro-F1 results 
and embedding generation time over different counts of 
training triples in Fig. 7b. We can see that for half a million 

(a) The pooling strategy comparison for the
task of node classification

(b) Effect of # triples used for training on
performance and time (Arnetminer dataset)

Fig. 6   Study effects of pooling strategy and # training triples

(a) Results for scalability
study

(b) Results of performance
using different loss functions

(c) Combined and indepen-
dent learning of attribute and
neighborhood embedding.

Fig. 7   Scalability study and importance of BPR loss and other layers of the Neural-Brane 
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triples the Neural-Brane doesn’t render the optimal result as 
the method is not converged. However, it converges with 1.5 
million triples and consistently provides very good perfor-
mance (high Macro-F1) for higher triple counts. Notice that, 
for this biggest dataset (Arnetminer), Neural-Brane takes 
around 6 minutes ( < 400 seconds) to sample the 1.5 million 
triples and train with those triples. This observation also 
proves that Neural-Brane is highly scalable because of its 
linear time complexity (Sect. 4.5).

5.5 � Scalability Study

To check the scalability of the proposed Neural-Brane, we 
conducted experiment to check run times of various large 
synthetic networks. To generate these synthetic networks, 
we use popular Barabási–Albert preferential attachment 
model [1]. We generate low density random binary vector 
of size 500 as a synthetic attributes for each node. For this 
experiment, we vary size of the networks such that they have 
nodes in range of 25,000 to 100,000 with 25,000 increment. 
The running time of these networks is depicted in Fig. 7a, 
which shows a linear increase in run time with the increase 
in size of the network. The empirical linear increase in run 
time with respect to the size of the network is consistent with 
our model complexity analysis in Sect. 4.5.

5.6 � Effectiveness of BPR Loss and Contribution 
of Other Neural‑Brane layers

As we discussed before, the ranking BPR loss as an objec-
tive function highly contributes toward the remarkable 
performance of the proposed Neural-Brane. To support 
this claim, we conduct comparison experiment where we 
replace the objective function of the Neural-Brane with tra-
ditional Hinge loss and Cross-entropy (Log) loss. For fair 
comparison, we run the modified models with the same set 
of parameters discussed in Sect. 5.1.2. The performance of 
the modified methods and proposed Neural-Brane is shown 
in Fig. 7b, where we can see that Neural-Brane with BPR 
loss always outperforms both Log loss- and Hinge loss based 
methods.

Though BPR loss helps in performance improvement 
in the Neural-Brane, we need to check the importance 
of embedding and hidden layers which are responsible 
for information fusion of topology and attributes. For 
this experiment, we feed attribute vector ( vattr

b
 for node b) 

directly to the output layer to learn attribute embedding 
( � ). Similarly, we feed neighborhood vector ( vnbr

b
 for node 

b) to output layer to learn neighborhood based embedding 
( �′ ). We concatenate these vectors for each node as a final 
node representation vectors; we call this method as node & 
attribute separate embedding. We compare the classifica-
tion performance of this embedding method with proposed 

Neural-Brane, and results are shown in Fig. 7c. This com-
parison result shows that the embedding and hidden layers 
of the proposed method contribute toward improvement in 
the performance. Hence, from these results, we can conclude 
that both BPR loss as an objective function and advanced 
approach of information fusion using embedding and hidden 
layers jointly produce superior performance for the proposed 
Neural-Brane.

6 � Conclusion

We present a novel neural Bayesian personalized ranking 
formulation for attributed network embedding, which we 
call Neural-Brane. Specifically, Neural-Brane combines a 
designed neural network model and a novel Bayesian rank-
ing objective to learn informative vector representations that 
jointly incorporate network topology and nodal attributions. 
Experimental results on the node classification and clus-
tering tasks over four real-world datasets demonstrate the 
effectiveness of the proposed Neural-Brane over 10 baseline 
methods.
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