19 research outputs found

    Author Index

    Get PDF

    Abstract Regular Tree Model Checking

    Get PDF
    International audienceRegular (tree) model checking (RMC) is a promising generic method for formal verification of infinite-state systems. It encodes configurations of systems as words or trees over a suitable alphabet, possibly infinite sets of configurations as finite word or tree automata, and operations of the systems being examined as finite word or tree transducers. The reachability set is then computed by a repeated application of the transducers on the automata representing the currently known set of reachable configurations. In order to facilitate termination of RMC, various acceleration schemas have been proposed. One of them is a combination of RMC with the abstract-check-refine paradigm yielding the so-called abstract regular model checking (ARMC). ARMC has originally been proposed for word automata and transducers only and thus for dealing with systems with linear (or easily linearisable) structure. In this paper, we propose a generalisation of ARMC to the case of dealing with trees which arise naturally in a lot of modelling and verification contexts. In particular, we first propose abstractions of tree automata based on collapsing their states having an equal language of trees up to some bounded height. Then, we propose an abstraction based on collapsing states having a non-empty intersection (and thus "satisfying") the same bottom-up tree "predicate" languages. Finally, we show on several examples that the methods we propose give us very encouraging verification results

    Optimised determinisation and completion of finite tree automata

    Get PDF
    Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions of the determinised (and possibly completed) automaton are generated in a potentially very compact form called product form, which can reduce the size of the representation dramatically. Furthermore, the representation can often be used directly when manipulating the determinised automaton. The paper contains an experimental evaluation of the algorithm on a large set of tree automata examples

    Tree Automata for Detecting Attacks on Protocols with Algebraic Cryptographic Primitives

    Get PDF
    International audienceThis paper extends a rewriting approximations-based theoretical framework in which the security problem -- secrecy preservation against an active intruder -- may be semi-decided through a reachability analysis. In a recent paper, we have shown how to semi-decide whether a security protocol using algebraic properties of cryptographic primitives is safe. In this paper, we investigate the dual - insecurity - problem: we explain how to semi-decide whether a protocol using cryptographic primitive algebraic properties is unsafe. This improvement offers us to draw automatically a complete diagnostic of a security protocol with an unbounded number of sessions. Furthermore, our approach is supported by the tool TA4SP successfully applied for analysing the NSPK-xor protocol and the Diffie-Hellman protocol

    Integrating verification, testing, and learning for cryptographic protocols

    Get PDF
    International audienceThe verification of cryptographic protocol specifications is an active research topic and has received much attention from the formal verification community. By contrast, the black-box testing of actual implementations of protocols, which is, arguably, as important as verification for ensuring the correct functioning of protocols in the “real†world, is little studied. We propose an approach for checking secrecy and authenticity properties not only on protocol specifications, but also on black-box implementations. The approach is compositional and integrates ideas from verification, testing, and learning. It is illustrated on the Basic Access Control protocol implemented in biometric passports

    Formal Models and Techniques for Analyzing Security Protocols: A Tutorial

    Get PDF
    International audienceSecurity protocols are distributed programs that aim at securing communications by the means of cryptography. They are for instance used to secure electronic payments, home banking and more recently electronic elections. Given The financial and societal impact in case of failure, and the long history of design flaws in such protocol, formal verification is a necessity. A major difference from other safety critical systems is that the properties of security protocols must hold in the presence of an arbitrary adversary. The aim of this paper is to provide a tutorial to some modern approaches for formally modeling protocols, their goals and automatically verifying them
    corecore