7 research outputs found

    Automated reasoning for reflective programs

    Get PDF
    Reflective programming allows one to construct programs that manipulate or examine their behaviour or structure at runtime. One of the benefits is the ability to create generic code that is able to adapt to being incorporated into different larger programs, without modifications to suit each concrete setting. Due to the runtime nature of reflection, static verification is difficult and has been largely ignored or only weakly supported. This work focusses on supporting verification for cases where generic code that uses reflection is to be used in a “closed” program where the structure of the program is known in advance. This thesis first describes extensions to a verification system and semi-automated tool that was developed to reason about heap-manipulating programs which may store executable code on the heap. These extensions enable the tool to support a wider range of programs on account of the ability to provide stronger specifications. The system’s underlying logic is an extension of separation logic that includes nested Hoare-triples which describe behaviour of stored code. Using this verification tool, with the crucial enhancements in this work, a specified reflective library has been created. The resulting work presents an approach where metadata is stored on the heap such that the reflective library can be implemented using primitive commands and then specified and verified, rather than developing new proof rules for the reflective operations. The supported reflective functions characterise a subset of Java’s reflection library and the specifications guarantee both memory safety and a degree of functional correctness. To demonstrate the application of the developed solution two case studies are carried out, each of which focuses on different reflection features. The contribution to knowledge is a first look at how to support semi-automated static verification of reflective programs with meaningful specifications

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Abstract predicate entailment over points-to heaplets is syntax recognition

    No full text
    Abstract predicates are considered in this paper as abstraction technique for heap-separated configurations, and as genuine Prolog predicates which are translated straight into a corresponding formal language grammar used as validation scheme for intermediate heap states. The approach presented is rule-based because the abstract predicates are rule-based, the parsing technique can be interpreted as an automated fold/unfold of the corresponding heap graph

    Inductive representation, proofs and refinement of pointer structures

    Get PDF
    Cette thÚse s'intÚgre dans le domaine général des méthodes formelles qui donnent une sémantique aux programmes pour vérifier formellement des propriétés sur ceux-ci. Sa motivation originale provient d'un besoin de certification des systÚmes industriels souvent développés à l'aide de l'Ingénierie Dirigée par les ModÚles (IDM) et de langages orientés objets (OO). Pour transformer efficacement des modÚles (ou graphes), il est avantageux de les représenter à l'aide de structures de pointeurs, économisant le temps et la mémoire grùce au partage qu'ils permettent. Cependant la vérification de propriétés sur des programmes manipulant des pointeurs est encore complexe. Pour la simplifier, nous proposons de démarrer le développement par une implémentation haut-niveau sous la forme de programmes fonctionnels sur des types de données inductifs facilement vérifiables dans des assistants à la preuve tels que Isabelle/HOL. La représentation des structures de pointeurs est faite à l'aide d'un arbre couvrant contenant des références additionnelles. Ces programmes fonctionnels sont ensuite raffinés si nécessaire vers des programmes impératifs à l'aide de la bibliothÚque Imperative_HOL. Ces programmes sont en dernier lieu extraits vers du code Scala (OO). Cette thÚse décrit la méthodologie de représentation et de raffinement et fournit des outils pour la manipulation et la preuve de programmes OO dans Isabelle/HOL. L'approche est éprouvée par de nombreux exemples dont notamment l'algorithme de Schorr-Waite et la construction de Diagrammes de Décision Binaires (BDDs).This thesis stands in the general domain of formal methods that gives semantics to programs to formally prove properties about them. It originally draws its motivation from the need for certification of systems in an industrial context where Model Driven Engineering (MDE) and object-oriented (OO) languages are common. In order to obtain efficient transformations on models (graphs), we can represent them as pointer structures, allowing space and time savings through the sharing of nodes. However verification of properties on programs manipulating pointer structures is still hard. To ease this task, we propose to start the development with a high-level implementation embodied by functional programs manipulating inductive data-structures, that are easily verified in proof assistants such as Isabelle/HOL. Pointer structures are represented by a spanning tree adorned with additional references. These functional programs are then refined - if necessary - to imperative programs thanks to the library Imperative_HOL. These programs are finally extracted to Scala code (OO). This thesis describes this kind of representation and refinement and provides tools to manipulate and prove OO programs in Isabelle/HOL. This approach is put in practice with several examples, and especially with the Schorr-Waite algorithm and the construction of Binary Decision Diagrams (BDDs)
    corecore