2,848 research outputs found

    Higher-Order Termination: from Kruskal to Computability

    Get PDF
    Termination is a major question in both logic and computer science. In logic, termination is at the heart of proof theory where it is usually called strong normalization (of cut elimination). In computer science, termination has always been an important issue for showing programs correct. In the early days of logic, strong normalization was usually shown by assigning ordinals to expressions in such a way that eliminating a cut would yield an expression with a smaller ordinal. In the early days of verification, computer scientists used similar ideas, interpreting the arguments of a program call by a natural number, such as their size. Showing the size of the arguments to decrease for each recursive call gives a termination proof of the program, which is however rather weak since it can only yield quite small ordinals. In the sixties, Tait invented a new method for showing cut elimination of natural deduction, based on a predicate over the set of terms, such that the membership of an expression to the predicate implied the strong normalization property for that expression. The predicate being defined by induction on types, or even as a fixpoint, this method could yield much larger ordinals. Later generalized by Girard under the name of reducibility or computability candidates, it showed very effective in proving the strong normalization property of typed lambda-calculi..

    Instruction sequence processing operators

    Get PDF
    Instruction sequence is a key concept in practice, but it has as yet not come prominently into the picture in theoretical circles. This paper concerns instruction sequences, the behaviours produced by them under execution, the interaction between these behaviours and components of the execution environment, and two issues relating to computability theory. Positioning Turing's result regarding the undecidability of the halting problem as a result about programs rather than machines, and taking instruction sequences as programs, we analyse the autosolvability requirement that a program of a certain kind must solve the halting problem for all programs of that kind. We present novel results concerning this autosolvability requirement. The analysis is streamlined by using the notion of a functional unit, which is an abstract state-based model of a machine. In the case where the behaviours exhibited by a component of an execution environment can be viewed as the behaviours of a machine in its different states, the behaviours concerned are completely determined by a functional unit. The above-mentioned analysis involves functional units whose possible states represent the possible contents of the tapes of Turing machines with a particular tape alphabet. We also investigate functional units whose possible states are the natural numbers. This investigation yields a novel computability result, viz. the existence of a universal computable functional unit for natural numbers.Comment: 37 pages; missing equations in table 3 added; combined with arXiv:0911.1851 [cs.PL] and arXiv:0911.5018 [cs.LO]; introduction and concluding remarks rewritten; remarks and examples added; minor error in proof of theorem 4 correcte

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Square root meadows

    Get PDF
    Let Q_0 denote the rational numbers expanded to a meadow by totalizing inversion such that 0^{-1}=0. Q_0 can be expanded by a total sign function s that extracts the sign of a rational number. In this paper we discuss an extension Q_0(s ,\sqrt) of the signed rationals in which every number has a unique square root.Comment: 9 page

    An Axiomatic Setup for Algorithmic Homological Algebra and an Alternative Approach to Localization

    Full text link
    In this paper we develop an axiomatic setup for algorithmic homological algebra of Abelian categories. This is done by exhibiting all existential quantifiers entering the definition of an Abelian category, which for the sake of computability need to be turned into constructive ones. We do this explicitly for the often-studied example Abelian category of finitely presented modules over a so-called computable ring RR, i.e., a ring with an explicit algorithm to solve one-sided (in)homogeneous linear systems over RR. For a finitely generated maximal ideal m\mathfrak{m} in a commutative ring RR we show how solving (in)homogeneous linear systems over RmR_{\mathfrak{m}} can be reduced to solving associated systems over RR. Hence, the computability of RR implies that of RmR_{\mathfrak{m}}. As a corollary we obtain the computability of the category of finitely presented RmR_{\mathfrak{m}}-modules as an Abelian category, without the need of a Mora-like algorithm. The reduction also yields, as a by-product, a complexity estimation for the ideal membership problem over local polynomial rings. Finally, in the case of localized polynomial rings we demonstrate the computational advantage of our homologically motivated alternative approach in comparison to an existing implementation of Mora's algorithm.Comment: Fixed a typo in the proof of Lemma 4.3 spotted by Sebastian Posu
    • …
    corecore