39 research outputs found

    Abstract Logics as Dialgebras

    Get PDF
    AbstractThe aim of this report is to propose a line of research that studies the connections between the theory of consequence operators as developed in [1] and [4] and the theory of dialgebras. The first steps in this direction are taken in this report, namely some of the basic notions of the theory of consequence operators - such as abstract logics - are translated into notions of the theory of dialgebras, and internal characterizations of the corresponding classes of objects are presented. Moreover it is shown that the class of coalgebras that corresponds to abstract logics of empty signature is a covariety

    Goldblatt-Thomason Theorems for Modal Intuitionistic Logics

    Full text link
    We prove Goldblatt-Thomason theorems for frames and models of a wide variety of modal intuitionistic logics, including ones studied by Wolter and Zakharyaschev, Goldblatt, Fischer Servi, and Plotkin and Sterling. We use the framework of dialgebraic logic to describe most of these logics and derive results in a uniform way

    Interaction and observation: categorical semantics of reactive systems trough dialgebras

    Full text link
    We use dialgebras, generalising both algebras and coalgebras, as a complement of the standard coalgebraic framework, aimed at describing the semantics of an interactive system by the means of reaction rules. In this model, interaction is built-in, and semantic equivalence arises from it, instead of being determined by a (possibly difficult) understanding of the side effects of a component in isolation. Behavioural equivalence in dialgebras is determined by how a given process interacts with the others, and the obtained observations. We develop a technique to inter-define categories of dialgebras of different functors, that in particular permits us to compare a standard coalgebraic semantics and its dialgebraic counterpart. We exemplify the framework using the CCS and the pi-calculus. Remarkably, the dialgebra giving semantics to the pi-calculus does not require the use of presheaf categories

    Interaction and observation, categorically

    Get PDF
    This paper proposes to use dialgebras to specify the semantics of interactive systems in a natural way. Dialgebras are a conservative extension of coalgebras. In this categorical model, from the point of view that we provide, the notions of observation and interaction are separate features. This is useful, for example, in the specification of process equivalences, which are obtained as kernels of the homomorphisms of dialgebras. As an example we present the asynchronous semantics of the CCS.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Modal meet-implication logic

    Get PDF
    We extend the meet-implication fragment of propositional intuitionistic logic with a meet-preserving modality. We give semantics based on semilattices and a duality result with a suitable notion of descriptive frame. As a consequence we obtain completeness and identify a common (modal) fragment of a large class of modal intuitionistic logics. We recognise this logic as a dialgebraic logic, and as a consequence obtain expressivity-somewhere-else. Within the dialgebraic framework, we then investigate the extension of the meet-implication fragment of propositional intuitionistic logic with a monotone modality and prove completeness and expressivity-somewhere-else for it

    A coalgebraic perspective on logical interpretations

    Get PDF
    In Computer Science stepwise refinement of algebraic specifications is a well-known formal methodology for rigorous program development. This paper illustrates how techniques from Algebraic Logic, in particular that of interpretation, understood as a multifunction that preserves and reflects logical consequence, capture a number of relevant transformations in the context of software design, reuse, and adaptation, difficult to deal with in classical approaches. Examples include data encapsulation and the decomposition of operations into atomic transactions. But if interpretations open such a new research avenue in program refinement, (conceptual) tools are needed to reason about them. In this line, the paper’s main contribution is a study of the correspondence between logical interpretations and morphisms of a particular kind of coalgebras. This opens way to the use of coalgebraic constructions, such as simulation and bisimulation, in the study of interpretations between (abstract) logics.Fundação para a Ciência e a Tecnologia (FCT

    Dualities in modal logic

    Get PDF
    Categorical dualities are an important tool in the study of (modal) logics. They offer conceptual understanding and enable the transfer of results between the different semantics of a logic. As such, they play a central role in the proofs of completeness theorems, Sahlqvist theorems and Goldblatt-Thomason theorems. A common way to obtain dualities is by extending existing ones. For example, Jonsson-Tarski duality is an extension of Stone duality. A convenient formalism to carry out such extensions is given by the dual categorical notions of algebras and coalgebras. Intuitively, these allow one to isolate the new part of a duality from the existing part. In this thesis we will derive both existing and new dualities via this route, and we show how to use the dualities to investigate logics. However, not all (modal logical) paradigms fit the (co)algebraic perspective. In particular, modal intuitionistic logics do not enjoy a coalgebraic treatment, and there is a general lack of duality results for them. To remedy this, we use a generalisation of both algebras and coalgebras called dialgebras. Guided by the research field of coalgebraic logic, we introduce the framework of dialgebraic logic. We show how a large class of modal intuitionistic logics can be modelled as dialgebraic logics and we prove dualities for them. We use the dialgebraic framework to prove general completeness, Hennessy-Milner, representation and Goldblatt-Thomason theorems, and instantiate this to a wide variety of modal intuitionistic logics. Additionally, we use the dialgebraic perspective to investigate modal extensions of the meet-implication fragment of intuitionistic logic. We instantiate general dialgebraic results, and describe how modal meet-implication logics relate to modal intuitionistic logics

    Modal meet-implication logic

    Get PDF
    We extend the meet-implication fragment of propositional intuitionistic logic with a meet-preserving modality. We give semantics based on semilattices and a duality result with a suitable notion of descriptive frame. As a consequence we obtain completeness and identify a common (modal) fragment of a large class of modal intuitionistic logics. We recognise this logic as a dialgebraic logic, and as a consequence obtain expressivity-somewhere-else. Within the dialgebraic framework, we then investigate the extension of the meet-implication fragment of propositional intuitionistic logic with a monotone modality and prove completeness and expressivity-somewhere-else for it
    corecore