361,979 research outputs found

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    A situational approach for the definition and tailoring of a data-driven software evolution method

    Get PDF
    Successful software evolution heavily depends on the selection of the right features to be included in the next release. Such selection is difficult, and companies often report bad experiences about user acceptance. To overcome this challenge, there is an increasing number of approaches that propose intensive use of data to drive evolution. This trend has motivated the SUPERSEDE method, which proposes the collection and analysis of user feedback and monitoring data as the baseline to elicit and prioritize requirements, which are then used to plan the next release. However, every company may be interested in tailoring this method depending on factors like project size, scope, etc. In order to provide a systematic approach, we propose the use of Situational Method Engineering to describe SUPERSEDE and guide its tailoring to a particular context.Peer ReviewedPostprint (author's final draft

    An Extension of NDT to Model Entity Reconciliation Problems

    Get PDF
    Within the development of software systems, the development of web applications may be one of the most widespread at present due to the great number of advantages they provide such as: multiplatform, speed of access or the not requiring extremely powerful hardware among others. The fact that so many web applications are being developed, makes grotesque the volume of information that it is generated daily. In the management of all this information, it appears the entity reconciliation problem, which is to identify objects referring to the same real-world entity. This paper proposes to give a solution to this problem through a web perspective. To this end, the NDT methodology has been taken as a reference and has been extended adding new activities, artefacts and documents to cover this problem.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956-C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    A Taxonomy for a Constructive Approach to Software Evolution

    Get PDF
    In many software design and evaluation techniques, either the software evolution problem is not systematically elaborated, or only the impact of evolution is considered. Thus, most of the time software is changed by editing the components of the software system, i.e. breaking down the software system. The software engineering discipline provides many mechanisms that allow evolution without breaking down the system; however, the contexts where these mechanisms are applicable are not taken into account. Furthermore, the software design and evaluation techniques do not support identifying these contexts. In this paper, we provide a taxonomy of software evolution that can be used to identify the context of the evolution problem. The identified contexts are used to retrieve, from the software engineering discipline, the mechanisms, which can evolve the software software without breaking it down. To build such a taxonomy, we build a model for software evolution and use this model to identify the factors that effect the selection of software evolution\ud mechanisms. Our approach is based on solution sets, however; the contents of these sets may vary at different stages of the software life-cycle. To address this problem, we introduce perspectives; that are filters to select relevant elements from a solution set. We apply our taxonomy to a parser tool to show how it coped with problematic evolution problems

    A design recording framework to facilitate knowledge sharing in collaborative software engineering

    Get PDF
    This paper describes an environment that allows a development team to share knowledge about software artefacts by recording decisions and rationales as well as supporting the team in formulating and maintaining design constraints. It explores the use of multi-dimensional design spaces for capturing various issues arising during development and presenting this meta-information using a network of views. It describes a framework to underlie the collaborative environment and shows the supporting architecture and its implementation. It addresses how the artefacts and their meta-information are captured in a non-invasive way and shows how an artefact repository is embedded to store and manage the artefacts

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements
    corecore