
An Extension of NDT to Model Entity Reconciliation Problems

J. G. Enríquez, F. J. Domínguez-Mayo, J. A. García-García and M. J. Escalona
Computer Languages and Systems Department, University of Seville, Av. Reina Mercedes s/n, 41012, Seville, Spain

Keywords: Web Engineering, Model-driven Engineering, Entity Reconciliation, NDT.

Abstract: Within the development of software systems, the development of web applications may be one of the most
widespread at present due to the great number of advantages they provide such as: multiplatform, speed of
access or the not requiring extremely powerful hardware among others. The fact that so many web applications
are being developed, makes grotesque the volume of information that it is generated daily. In the management
of all this information, it appears the entity reconciliation problem, which is to identify objects referring to
the same real-world entity. This paper proposes to give a solution to this problem through a web perspective.
To this end, the NDT methodology has been taken as a reference and has been extended adding new activities,
artefacts and documents to cover this problem.

1 INTRODUCTION

At present, the development and creation of web
applications is imposed in the world as a
technological tool to unite the regions, create
business, support companies, appear in the market
and plethora of applications according to the
perspectives of people and their scope, finding on the
internet, a vital source of job creation, effective and
intelligent business and great help in achieving
objectives and approaches.

In this world where there are more than 6.400
million devices connected to the Internet generating
information, where more than 1,570 terabytes of
information per minute are transferred and where the
information about any topic takes a lot of interest by
the civilization (Gubbi et Al., 2013), it appears a very
big and difficult problem when someone tries to look
for an information, the heterogeneity of data.

The problem of heterogeneity of data resides in
the multiple data sources where the information
related to the same topic is stored adding to this
problem that the most of these data sources do not
share the same structure and even data that they store,
even though they are related to the same subject, may
not be the same.

In this context it appears the problem of the entity
reconciliation. This problem lies in the difficulty of
identifying entities in different data sources that
describe the same real-world entity although the
information that describes this entity are not equals.

This paper aims to give a solution to this kind of
problems through a model-driven web perspective.
To achieve this goal, it has been taken as reference
the Navigational Development Techniques (NDT)
methodology and it has been extended with a set of
activities and documents to carry out an entity
reconciliation problem. It has been selected NDT
because of the

The remainder of this paper is organized as
follow: section 2 summarizes the background of this
paper, presenting the two main pillar of this proposal,
MDE and NDT. Section 3 describes the problem of
the entity reconciliation. In section 4 it is explained
the different activities that this paper proposes in
order to extend NDT for covering an entity
reconciliation problem into a software development
process. Finally, section 5 states a set of conclusions
and future works.

2 BACKGROUND

2.1 Model-Driven Engineering (MDE)

In the scientific activity, abstraction has been and is
widely used, and often referred to it as the activity of
modeling. If a model is defined as a partial or
simplified reality representation, that allows the final
user to address a complex task for a specific purpose,
it can be considered a model as the result of
abstraction (García-Borgoñón, 2015).

430
Enríquez, J., Domínguez-Mayo, F., Escalona, M. and García-García, J.
An Extension of NDT to Model Entity Reconciliation Problems.
DOI: 10.5220/0006393604300436
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 430-436
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/227043543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The complexity of software development has
been growing up drastically. In this sense, developers
noted in models, an alternative for addressing this
complexity. MDE emerged to address the complexity
of software systems in order to express the concepts
of the problem domain in an effective way (Schmidt,
2006). Thus, in the early stages of development,
models are more abstract than in the final stages
where the models are much closer to implementation.
It means, abstract models are transformed into
concrete ones the aim of producing software.
Studying this process, (Brambilla et Al., 2012)
defined the two fundamental pillars of the MDE
paradigm for creating software automatically: models
and transformations.
 Models must be defined according to the rules

of a concrete Modelling Language (ML). This
language defines the syntax and semantic of the
model (Metzger, 2008). The ML syntax is
composed of a concrete and an abstract syntax.
The abstract one defines the language structure
and how the different elements can be
combined, regardless of its representation. The
semantic one, that provides the static and
dynamic part, poses restrictions and establishes
the meaning of the elements of the language
and different ways to combine them. In this
moment, it appears the concept of metamodel.
A metamodel can be defined as a special type
of model that specifies a ML. The metamodel
defines the structure and constraints for a
family of models (Mellor et al., 2004).

 Transformations are the mechanisms that
allow to derive models from other existing
ones. A transformation between models
represent a relation between two abstract
syntaxes and it is defined by a set of relations
between the elements of the metamodels (Thiry
& Thirion, 2009). There are two types of
transformations: horizontal (the derived model
and the original one have the same abstraction
level) and verticals (the derived model has a
lower abstraction level than the original one).

A very interesting concept found in the MDE
literature is proposed by Bézivin, (2005) where
“Everything is a model”. In this sense,
transformations themselves, are also considered as
models. Generally, a transformation models program
takes as input a model according to an origin
metamodel and produces as output a model according
to the target metamodel. The transformation program,
should be considered as a model itself.

One of the advantages of MDE is its support for
automation, as the models can be automatically

transformed from the early stages of development to
the final stages. Therefore, MDE allows automating
the tasks involved in a software development, such us
the testing tasks.

2.2 Navigational Development
Techniques (NDT)

NDT is a Model-Driven Engineering-based
methodology that provides formal and complete set
of processes that allow to support for software
lifecycle management. Using NDT, it is possible
cover the phases of the software engineering life
cycle in a structured way, reducing errors and
redundancies (Escalona & Aragón, 2008).

NDT Framework (Figure 1), stablishes six big
groups of processes that allow to develop a complete
software system in all its phases. These groups are:
project management process, software development
process, maintenance process, testing process, quality
process and security process. For the scope of this
paper, the focus will be put in the software
development process group.

Figure 1: NDT Framework.

Software development process group describes all
the processes, activities, artefacts and documents that
makes a software engineer be able to satisfy the
software development lifecycle. In this sense, NDT
methodology, to carry out this objective, stablishes
the following set of processes: feasibility process,
requirements process, system analysis process,
system design process, system building process and
system implementation process.

 Feasibility Process. In this process the
feasibility of a particular software project

An Extension of NDT to Model Entity Reconciliation Problems

431

should be analysed. It is usually done on
demand of the project or when the project is
developed in a complex or little known
environment that may make the feasibility of
the project doubtful.

 Requirement Process. Defines a requirements
catalogue that must define the system
requirements. The catalogued requirements
should be established according to their
typology and should not go into any detail
about how development will be solved.

 System Analysis Process. Products resulting
from the analysis, definition and structuring of
the requirements established in the previous
process, independently of the technological
platform that is finally used to develop the
software.

 System Design Process. Specific aspects of
how the analysis will be implemented in the
machine. It is oriented to the concrete platform
with which it is going to work and must
correspond with the structure of the future
code.

 System Building Process. This process refers
to the implementation or development of the
software system.

 System Implementation Process. This
process refers to the implementation period of
the product developed in the final customer.

In this context, what this paper proposes is extend
this software development process group of NDT
Framework, adding a set of activities, documents and
artefacts in order to make a software engineer able to
carry out an entity reconciliation problem.

3 ENTITY RECONCILIATION

Entity reconciliation (also called entity resolution or
ER) is a fundamental problem in data integration. It
refers to combining data from different sources for a
unified vision or, in other words, identifying entities
from the digital world that refers to the same real-
world entity. It is an uncertain process because the
decision to allocate a set of records with the same
entity, cannot be taken with certainty, unless these
records are identical in all their attributes or they have
a common key (Getoor and Machanavajjhala, 2012;
Wang et al., 2013).

Figure 2, illustrates a very clear example of entity
reconciliation proposed by McCallum et al., (2000).
This example is based on the bibliographic author
names of a database where the entitles to reconcile are

the authors. Left side of the Figure 2 shows the
“before” part of an entity reconciliation process. It is
possible to see that there are different authors related
between them, and some of them, seems to be the
same author although it is named by a different way.
Right side of the Figure 2 shows the “after” part of an
entity reconciliation process. It is possible to see that
the result structure after applying an entity
reconciliation process is much more clear,
understandable and clean, eliminating all possible
duplications, both in existing relationships and in the
entities themselves.

Figure 2: Entity Reconciliation example (McCallum et al.,
2000).

Entity reconciliation is a well-known problem and
it has been investigated since the birth of relational
databases (Whang & Garcia-Molina, 2014) and it can
be applied to many different domains. If to everything
mentioned, a very trending topic nowadays such as
the Big Data is added, this problem receives a much
more significant attention due to the new challenges
that it arises.

4 NDT-RECONCILIATION

This paper proposes the extension of NDT in order to
integrate the entity reconciliation process into a
software development process. This integration has
been proposed with the aim of formalizing all the
activities that must be carried out to perform the entity
reconciliation process within a software
development. As mentioned before and taking into
account the size of software development process
group of NDT, this paper will only cover the block of
requirement and system analysis processes.

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

432

Figure 3: Extended Software Development Process Group of NDT.

Figure 3 shows the extended software
development process group of NDT. The strong and
bold yellow boxes show the process blocks that have
been extended and also, the new documents that must
be generated. This extension, proposes the generation
of two new documents: the data sources report and
the analysis model.

The main goal of the requirement process of NDT
is to define a requirements catalogue that define the
system requirements. To achieve this goal, the
following activities are proposed: model objectives,
model services, model storage requirements, model
actors, model functional requirements, model
interaction requirements, model non-functional
requirements and generate requirements document.
This proposal presents a new activity called:
“Analyse Data Sources” (Figure 4).

Figure 4: Extended Requirement Process Group of NDT.

“Analyse Data Sources” activity is the activity
where the data analysts study and analyse the
different data sources that the data consumers have
presented for their problem. This activity is divided in
four main steps (Figure 5). Three of them can be
performed in parallel: analyse data source format,
analyse data access and analyse number of records of
the data source. Once these activities have been
finished, it takes place the generate data sources

report activate where the data source report is
generated.
 Analyse Data Source Format is the activity

where the data analysts will have to study and
analyse the data structure of the data sources
that the data consumers have defined as
problematics. In this sense, they have to
analyse if each data source refers to a plane text
file, a relational database, Oracle, MySQL, a
non-relational database or any other type.

 Analyse Data Access is the activity where the
data analysts will have to study and analyse the
data access way of the data sources that the data
consumers have defined as problematics. In
this sense, they have to analyse if each data
source refers web service, ODBC any other
type of database connection or access.

 Analyse Records Number is the activity
where the data analysts will have to study and
analyse the number of records of each of the
data source that the data consumers have
defined as problematics (hundred, thousands,
millions, etc.). This activity will provide some
knowledge and help to choose the technology
in which the system will be implemented in the
design phase.

 Generate Data Sources Report it the activity
where the data analysts will have to create the
data sources report with all the information
studied and analysed in previous steps.

An Extension of NDT to Model Entity Reconciliation Problems

433

Figure 5: Description of “Analyse Data Sources” activity.

After Requirement Process block, NDT
methodology continues with the System Analysis
Process. Once this process is completed, it is obtained
products resulting from the analysis, definition and
structuring of the requirements established in the
previous phase. This block of processes is composed
of a set of activities, these are: define services,
perform the analysis class model, perform
navigational model, perform the set of prototypes and
generate the DAS document. This proposal presents
three new activities called: “Review Data Sources
Report”, “Define Entity Reconciliation Problem” and
“Generate Analysis Model”. (Figure 6).

Figure 6: Extended System Analysis Process Group of
NDT.

“Review the Strategy Document” activity is based
on the on the study, analysis and review by the
software engineer of the strategy document generated
in the requirement process. This activity receives as
input the strategy document generated in the
requirement process and generates the analysis
document model as result. The software engineers in
charge of carrying out this phase will have to, with
the support of the strategy document, analyze data
stored in each database, in order to define: (i) a clear
vision of what represents an entity in the problem
where the user is working on (studying their attributes
and relationships) and (ii), what will be the data
structure in which the result of reconciliation will be
stored.

“Define the Entity Reconciliation Problem”
activity (Figure 7) is the activity where the software
engineer has to model the entity reconciliation
problem. This activity will be carried out through the
use of the MaRIA Tool (Enríquez et al., 2015).
MaRIA (Model-Driven entity ReconcilIAtion) Tool
is a domain specific language (DSL) (Cook, Jones,
Kent, & Wills, 2007) that allows a software engineer
to model entity reconciliation problems. This activity
is divided in seven main steps. The four first ones,
define wrappers, define data sources, define entities,
define attributes, can be performed in parallel. Once
defined, the software engineer hast to define the
connectors, the data structure and finally, define the
transformations.

Figure 7: Description of “Define the Entity Reconciliation
Problem” activity.

 Define Wrappers is the activity where the
software engineer will have to model the
wrappers that will allow the transfer of
information from the data sources that the data
consumers have defined as problematics into
the entities that will be defined later. In this
sense, the software engineer has to use the
wrapper element of the MaRIA tool and model
in the diagram one element for each data
source.

 Define Data Sources is the activity where the
software engineer will have to model the data
sources that the data consumers have defined as
problematics. In this sense, the software
engineer has to use the data source element of
the MaRIA tool and model in the diagram one
element for each data source.

 Define Entities is the activity where the
software engineer will have to model the
entities where the information coming from the
data sources will be stored in. In this sense, the
software engineer has to use the data entity
element of the MaRIA tool and model in the
diagram one element for each data source.

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

434

 Define Attributes is the activity where the
software engineer will have to model the
attributes that compose the entities. In this
sense, the software engineer has to use the data
source attribute element of the MaRIA tool and
model as many attributes as each entity needs.

 Define Connectors is the activity where the
software engineer will have to model the
connectors between the elements that have
been defined in the three previous steps. The
connectors will relate the wrappers with the
data sources, the data sources with the entities
and the entities with their attributes. In this
sense, the software engineer has to use the
different types of connectors element that
MaRIA tool offers depending on the elements
needed to be related.

 Define Data Structure is the activity where
the software engineer will have to model the
data structure where the data reconciled of the
final solution will be stored. For performing
this activity, the user will have to use the entity,
attribute and connector elements of the MaRIA
tool. In this software engineer will have to
create the entities, related between them if
necessary and the attributes that describe each
entity. For each data source must be created a
structure and in addition to these, it has to be
created another one that will store the final
solution.

 Define Data Transformations is the activity
where the software engineer will have to model
the data transformations between the different
attributes already created or between the data
structures. In this sense, the software engineer
has to use the transformation operations that the
MaRIA tool offers and use it for relating
attributes or data structures depending on the
necessities of the problem.

Finally, the “Generate Analysis Document”
activity is presented. The main function of this
activity is to collect all the information generated in
the different previous activities of the analysis phase
in a single document, which will serve as a
knowledge base and input for the design phase. Also
it will be provided the model defined using the
MaRIA tool.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, it has been proposed an extension of the
NDT methodology with the aim of giving support to
cover an entity reconciliation problem during a
system software development.

Concretely, and taking into account the scope of
this paper, it has been extended the requirement and
system analysis processes of the NDT Framework
that NDT methodology proposes.

The activities proposed for the requirement
process aim to understand the problem as well as the
data sources that must be reconciled for giving a
solution to the entity reconciliation problem. The
activities proposed for the system analysis process
aim to model the entity reconciliation problem. To
achieve this purpose, a DSL-based tool called MaRIA
is proposed.

Taking into account that NDT Methodology
covers the complete process of the software
development, the main future work of this proposal is
to extend this methodology in order to cover the
remaining blocks of processes that have not been
covered in this proposal. Also, new methodologies
are being considered in order to see how the activities
described and added to the NDT should be integrated
for checking the scalability of this proposal.

ACKNOWLEDGEMENTS

This research has been supported by the MeGUS
project (TIN2013-46928-C3-3-R), Pololas project
(TIN2016-76956-C3-2-R), by the SoftPLM Network
(TIN2015-71938-REDT) of the Spanish the Ministry
of Economy and Competitiveness and Fujitsu
Laboratories of Europe (FLE).

REFERENCES

Bézivin, J. (2005). On the unification power of models.
Software and Systems Modeling, 4(2), 171–188.
http://doi.org/10.1007/s10270-005-0079-0

Brambilla, M., Cabot, J., & Wimmer, M. (2012). Model-
Driven Software Engineering in Practice. Synthesis
Lectures on Software Engineering (Vol. 1).
http://doi.org/10.2200/S00441ED1V01Y201208SWE0
01

Cook, S., Jones, G., Kent, S., & Wills, A. C. (2007).
Domain Specific Development with Visual Studio DSL
Tools. Library.

An Extension of NDT to Model Entity Reconciliation Problems

435

Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J.,
García-García, J. A., Lee, V., & Masatomo, G. (2015).
Entity Identity Reconciliation based Big Data
Federation-A MDE approach. In International
Conference on Information Systems Development
(ISD2015). Retrieved from
http://aisel.aisnet.org/isd2014/proceedings2015/MDD
Concepts/7/

Escalona, M. J., & Aragón, G. (2008). NDT. A model-
driven approach for web requirements. IEEE
Transactions on Software Engineering, 34(3), 377–
394. http://doi.org/10.1109/TSE.2008.27

García-Borgoñón, L. (2015). Un marco de referencia para
facilitar la interoperabilidad y mantenibilidad de los
modelos de procesos de software.

Getoor, L., & Machanavajjhala, A. (2012). Entity
resolution: Theory, practice & open challenges.
Proceedings of the VLDB Endowment, 5(12), 2018–
2019. http://doi.org/10.14778/2367502.2367564

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M.
(2013). Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7), 1645–1660.
http://doi.org/10.1016/j.future.2013.01.010

McCallum, A., Nigam, K., & Ungar, L. L. H. (2000).
Efficient clustering of high-dimensional data sets with
application to reference matching. Proceedings of the
Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 169–178.
http://doi.org/10.1145/347090.347123

Mellor, S., Scott, K., Uhl, A., & Weise, D. (2004). MDA
Distilled - Principles of Model Driven Architecture.
Addison Wesley. Retrieved from
http://dx.doi.org/10.1007/3-540-46105-1_33

Metzger, A. (2008). A Systematic Look at Model
Transformations. Nature, 451(7), 644–647.
http://doi.org/10.1038/451644a

Schmidt, D. C. (2006). Guest Editor’s Introduction : Model-
Driven Engineering. IEEE Computer, 39(2), 25–31.
http://doi.org/http://doi.ieeecomputersociety.org/10.11
09/MC.2006.58

Thiry, L., & Thirion, B. (2009). Functional metamodels for
systems and software. Journal of Systems and Software,
82(7), 1125–1136. http://doi.org/10.1016/
j.jss.2009.01.042

Wang, F., Wang, H., Li, J., & Gao, H. (2013). Graph-based
reference table construction to facilitate entity
matching. Journal of Systems and Software, 86(6),
1679–1688. http://doi.org/10.1016/j.jss.2013.02.026

Whang, S. E., & Garcia-Molina, H. (2014). Incremental
entity resolution on rules and data. VLDB Journal,
23(1), 77–102. http://doi.org/10.1007/s00778-013-
0315-0

APMDWE 2017 - 2nd International Special Session on Advanced practices in Model-Driven Web Engineering

436

