
Towards Knowledge-Intensive Software
Engineering

Samuel R. Cauvin, Derek Sleeman, and Wamberto W. Vasconcelos

Department of Computing Science, University of Aberdeen, King’s
College, Aberdeen, AB24 3UE, United Kingdom
{s.cauvin, d.sleeman, w.w.vasconcelos}@abdn.ac.uk

Abstract
This research explores relations between software artefacts and explicitly rep-

resented (domain) knowledge. More specifically, we investigate ways in which
domain knowledge (represented as ontologies) can support software engineering
activities and, conversely, how software artefacts (e.g., programs, methods, and
UML diagrams) can support the creation of ontologies. In our approach, class
names, and class properties are the principal entities which are extracted from both
sources. We implemented a tool, called Facilitator, to support programmers and
knowledge engineers when they develop ontologies or programs. This tool pro-
vides a list of connections between the ontology and Java project, and provides
reasons why these connections have been identified. These connections are cre-
ated by matching names, types, and superclass-subclass relationships. Facilitator
provides a range of semantic web enabled functionalities.

1 INTRODUCTION
This research seeks to provide computational links between software artefacts and
explicitly represented (domain) knowledge. More specifically, this project inves-
tigates ways in which domain knowledge (represented as OWL ontologies) can
support software engineering activities and, conversely, how software artefacts
(programs, methods, and UML diagrams) can support knowledge engineering ac-
tivities.

Currently, there is a substantial gap between (domain) knowledge and software
engineering. This gap creates extra burdens on programmers who must re-engineer
domain knowledge (introducing possible misconceptions) when they could exploit
existing domain knowledge (e.g. ontologies). Consider a situation where a pro-
grammer is developing a program for calculating council tax; it is likely that the
programmer would look through a list of source materials to find out how council
tax is calculated. The programmer would then encode this calculation as a pro-
gram, possibly creating inaccuracies due to misunderstanding the domain knowl-
edge. Whereas for many common domains, an ontology exists which formally
represents this knowledge, from which the programmer could extract concepts and
relations that have already been represented in a machine-processable format by an
expert. This is the important issue that this research addresses, namely providing
methods to relate knowledge represented in an ontology to software engineering
activities. We have also addressed the reverse process, i.e. matching the knowledge
available in software artefacts to ontologies.

1



We implemented various functionalities in a tool called Facilitator, which takes
an ontology and a Java project and infers links between them. This tool exhaus-
tively analyses the knowledge contained in an ontology and in a Java project and
infers potential connections among concepts, as well as providing the reasons
why these connections have been formed. Facilitator can also create a “skele-
ton” project from a source project so that a Java program can be created from an
ontology, and vice versa.

Section 2 provides an overview of research in this field. Section 3 describes
the goals, requirements and architecture of Facilitator, and discusses technologies
used and technical details of the system. Section 4 provides a set of illustrative
scenarios to demonstrate matches that Facilitator can detect. Section 5 presents the
performance of Facilitator on a variety of tasks. Section 6 discusses some of the
problems that were encountered, provides an overall conclusion of this research,
and outlines future work.

2 BACKGROUND & RELATED WORK
Knowledge-based software engineering (Havlice et al., 2009; Kravets et al., 2014)
aims to support activities and stages of the software life-cycle, such as develop-
ment, testing, integration, and so on. The research reported here fits within this
broad remit, and we show how explicitly represented domain knowledge can be
used to support software development.

There have been many attempts to integrate ontologies into the software de-
velopment process, with most of them focussing on the design phase. Some deal
with the use of meta-modelling (Pan et al., 2012). Some deal with translating on-
tologies into UML models to be used in the design phase of software development
(Parreiras et al., 2007). Equally, work has been done to convert UML models into
OWL ontologies (Gasevic et al., 2004). However, little work has been done to in-
tegrate ontologies into the implementation phase of Software Development, which
is the activity which Facilitator supports.

Happel and Seedorf (2006) conducted a high level review of the potential ben-
efits of using domain ontologies in different stages of software development. They
suggest that in the implementation phase, ontologies could be used in various ways
including: as a domain object model, in coding support, in code documentation,
and to integrate with software modelling languages. They also note that ontologies
could be used in the analysis and design, deployment and runtime, and mainte-
nance stages in a variety of ways. They do not discuss plans to implement these
suggestions.

One major example of a large scale project attempting to integrate ontolo-
gies and software is the Marrying Ontologies and Software Technologies (MOST)
project1. The project produced several papers describing techniques for integrating
Ontologies into the software design process. One paper presents a detailed method
for mapping class relationships to description logics (Parreiras et al., 2008). An-
other discusses the potential for combining UML and Ontologies using a frame-
work called TwoUse (Parreiras et al., 2007). A third presents an approach to
integrating ontology based meta-models in software modelling, again using the
TwoUse framework (Staab et al., 2010).

A tool called RDFReactor2 provides methods for generating Java classes from
an RDF ontology, which is similar to the skeleton creation functionality of Facili-
tator (Quasthoff and Meinel, 2008).

An outline for a tool that maps software applications to domain ontologies

1http://west.uni-koblenz.de/Projects/MOST
2http://semanticweb.org/wiki/RDFReactor

2

http://west.uni-koblenz.de/Projects/MOST
http://semanticweb.org/wiki/RDFReactor


is presented in (Hruby, 2005). The mapping is achieved by creating a model of
the software addressing two orthogonal dimensions: Categories from the domain
ontology, and functional concerns from user requirements. Their approach begins
by determining the domain, specifically the scope of the application within a given
domain. The tool then locates an ontology to cover this domain, and also to contain
the “minimal set of concepts that completely covers the domain”. The system then
takes into account specific user requirements, specifically those that could not be
captured within the ontology. The last step is to construct the application model
using the information gathered above. This final step essentially encompasses the
matching task performed by Facilitator.

Aspects of the research presented here have been addressed previously in (Cau-
vin, 2014), but have subsequently been substantially expanded and revised. Specif-
ically, Facilitator can now display matches not just as a list, but the information
can be overlaid on the Java source, displayed as a textual critique, or displayed as
a statistical overview. Facilitator has also been extended to detect more types of
relationships and properties in the sources.

Figure 1: Screenshot of Parsed Components (Showing Java and Ontology Components)

Figure 2: Screenshot of Matching Results

3 SYSTEM DESCRIPTION
Here we discuss the goals, methodology, requirements, and architecture of

the system before discussing the technologies and methods used by Facilitator.
Source code from this research is available at https://github.com/Glenugie/
Facilitator/.

3

https://github.com/Glenugie/Facilitator/
https://github.com/Glenugie/Facilitator/


3.1 Goals
Facilitator’s overall hypothesis is that “It is possible to connect a software artefact
with an ontology”, which can be decomposed into the following goals:

• To explore ways in which explicitly represented knowledge (e.g., domain
ontologies) can support software engineering activities.

• To investigate how to computationally relate domain knowledge with main-
stream software technology.

• To connect software artefacts with existing domain knowledge.

• To provide a means of relating an ontology to existing software.

3.2 Methodology
The project methodology comprised the following activities:

1. Literature review to discover existing work in this field.

2. Study of stereotypical activities carried out by developers to construct a list
of functional requirements (Section 3.3).

3. Propose a reference architecture to cater for functional requirements (pre-
sented in Section 3.4).

4. Incremental development and integration of functionalities.

5. Testing and evaluation of the tool to cater for different scenarios that fulfil
the defined functional requirements.

3.3 Functional Requirements
A stereotypical user of the tool would need the following functional requirements
(finer-grained requirements have been omitted from this list due to space con-
straints, they can be found in full in (Cauvin, 2014)):

1. To formally connect an ontology with a software artefact

2. To reason with/about an ontology and the software artefact with a view to
understand more about the software and the ontology

Requirement-1 is needed to achieve Requirement-2. Requirement-2 is impor-
tant to achieve various stages of software development – specifically critique of
current design choices as well as revising explicit domain knowledge.

3.4 Architecture
The diagram in Figure 3 describes the components of the system and how they
interact. In this diagram, processes are represented by a square, data structures
by a barrel, and the user by a stickman. Arrows represent interactions between
components, and each interaction is numbered.

The components are:

• UI (GUI) – The interface through which the user interacts with the system

• Control – The main logic behind the system. Responsible for loading files,
storing information and querying the ontology/software artefact. This com-
ponent also utilises the stemmer.

• Matcher – Determines matches between components of the ontology and the
software artefact

• Reasoner – The ontology reasoner is used to extract more detailed informa-
tion from the ontology

4



Figure 3: System Architecture

• Ontology – The ontology which the system is analysing

• Software Artefact – The Java project which the system is analysing

Each of the components helps to fulfil at least one of the requirements. Re-
quirement 1 is fulfilled by the Control, Matcher, Ontology, and Software Artefact
components. Requirement 2 is fulfilled by the Control, Reasoner, Ontology, and
Software Artefact components.

A typical session is outlined in Table 1 which also summarises the system
interactions.

Table 1: Architecture Interactions

Interaction Explanation
1 User interaction with UI
2 Commands from the User
3 Querying the Ontology
4 Results of Query
5 Gathering information from the Software Artefact
6 Receiving information from the Software Artefact
7 Querying the Reasoner
8 Results from Reasoner
9 Updating the UI

3.5 Technologies
We now discuss technologies used in this project.

3.5.1 Java Parser

It is important for the system to parse Java files for content. When searching for
an effective way to do this, it quickly became apparent that there were a num-
ber of choices in the form of pre-existing APIs. Habelitz JSourceObjectizer3

is the API that was eventually chosen, as it works with Java 1.7 and can parse
source files (without compiling first). JSourceObjectizer produces an Abstract
Syntax Tree (AST) which the system can then search for specific components.
This package parses Java files accurately and efficiently. The parsing process uses
the JSourceObjectizer library to traverse the Java file. While traversing a file the
system detects certain Java declarations – Classes, Types, Variables and Methods.

3.5.2 Ontology Access

We chose to use OWL as the format for our ontologies, due primarily to its wide
spread availability, so we needed a means to parse OWL ontologies. The obvious

3http://www.habelitz.com/

5

http://www.habelitz.com/


choice for this parser was the OWL API4, as it fully supports reading and creating
OWL ontologies and has extensive documentation.

3.5.3 Stemming

The matching process includes the ability to loosely match names as part of the
stemming process. Stemming provides a means to detect names that share sim-
ilar roots, but are not an exact match. As stemming is a fairly common opera-
tion, a stemmer tool was sought to avoid reimplementation. The Snowball Stem-
mer5, specifically the Modified Snowball Stemmer6 which adds compatibly for
Java 1.6 and up, was chosen as it returns a single stem. This allows matching to
remain a one-click process. The stemming operation simply takes a word and pro-
duces a stemmed version of that word, in theory. In practice the word produced is
not always real, due to inaccuracies in the algorithm – however it does provide a
stemmed match in many circumstances.

3.6 Taxonomy of Types
Facilitator, rather than trying to match field types directly, makes use of a tax-

onomy of types which attempts to find the match between two types as low in a
tree-like structure as possible. This type hierarchy is shown in Figure 4. The top
of the tree has the type “Generic” such that anything can match it. When reporting
a field match based on type, the system distinguishes between direct matches and
matches which occur further up the taxonomy of types, which are then reported to
the user.

Figure 4: Taxonomy of Types

This taxonomy of types was created by mapping basic OWL data types to
the equivalent Java classes. These were then re-ordered slightly to produce the
hierarchy shown in Figure 4.

3.7 Matching Process
The matcher compares each Java class/field to each ontology class/field, and if it
detects a potential match logs this together with a reason. This reason ensures
transparency to the user, allowing them to appreciate why a match has been re-
ported and thus letting them decide whether to accept it. If, for example, the user
has written a program with a class Car and it is being compared to an ontology
which describes all sorts of vehicles, using classes Vehicle and its subclass Car. In
this situation the matcher could potentially match the two Car classes, but highlight

4http://owlapi.sourceforge.net/
5http://snowball.tartarus.org/
6http://trimc-nlp.blogspot.co.uk/2013/08/snowball-stemmer-for-java.html

6

http://owlapi.sourceforge.net/
http://snowball.tartarus.org/
http://trimc-nlp.blogspot.co.uk/2013/08/snowball-stemmer-for-java.html


that the superclass Vehicle is missing in the Java project. Another role for display-
ing reasons is to give the user an approximate idea of the strength of the match (a
match with five reasons is much stronger than a match with just one reason).

The algorithm effectively has three stages:

1. Detecting class matches between class and field names

2. Detecting class matches using superclass relationships

3. Detecting field7 matches

The last stage, detecting field matches, can be further divided into three sub-
stages:

1. Detecting field matches by name and type

2. Detecting field matches using inferred fields

3. Detecting field matches by type but not name, exclusively using previously
unmatched fields

These sub-stages are repeated for every class match, as this is effectively loop-
ing for each “set” of fields which should match. Two key concepts are introduced
by these sub-stages: Being able to detect unmatched fields, and inferred fields. The
latter is a field which has been “inferred” from a superclass or subclass, meaning
that it is not necessarily accurate. Matches using these fields are labelled as such
to alert the user to the potential errors that can occur. Only Java classes have in-
ferred fields, if the ontology were also to have inferred fields the system would
be overwhelmed with (incorrect) matches. The choice was made to associate the
inferred fields with Java, as we assumed the ontology is the more accurate source.
While this is not always true, in most cases it would be reasonable to assume that
the ontology has undergone more verification than the Java project/program.

Detecting unmatched fields is handled by a distinct process which simply goes
through the list of all fields and compares them against the list of field matches.
It then returns the list of fields which have not appeared in the field matches. Us-
ing this information is important, as some specific matches are treated as a final
attempt at generating matches. An example of this is attempting to detect matches
by type when names do not match. Due to the limited number of types, if this was
performed on all fields there would be a huge number of incorrect matches gen-
erated. Whereas if this process is only run on unmatched fields, there is a lower
chance of generating a large number of incorrect matches.

4 ILLUSTRATIVE SCENARIOS
Illustrative scenarios were explored to enable us to demonstrate Facilitator’s (rea-
soning) capabilities. These provide situations (with worked examples) of how rea-
soning can be used to perform more sophisticated matching. These scenarios are
based on two different example domains: Cars and Cups. These two domains are
detailed below, along with associated scenarios. The Cars example is from (Cau-
vin, 2014) and the Cups example is from (Carbonara and Sleeman, 1999). Toy
examples are presented here so as to enable a detailed discussion, but we explore
larger and more sophisticated examples in Section 5.

4.1 Cars Example
In the Java program we have the following classes:

• Car with fields: String colour, int wheels, and Engine engine

7Fields have both a name and a type.

7



• Engine with fields: int horsepower, and boolean turbo

In the corresponding ontology we have the following classes:

• Car with fields: String colour, int numberOfWheels, int horsepower, boolean
turbo, int doors

4.2 Cups Example
In the Java program we have the following classes:

• Cup with fields: String colour, boolean hasBottom, boolean hasHandle,
boolean hasConcavity, String material, int volume

• Mug (Subclass of Cup) with fields: String pattern

• Tumbler (Subclass of Cup) with fields: String pattern, boolean opaque

• Plate with fields: String colour, boolean isFlat, String material

In the corresponding ontology we have the following classes:

• Crockery with fields: boolean isCrockery

• Cup with fields: String colour, boolean hasBottom, boolean hasHandle,
boolean hasConcavity, String material, int volume

• CoffeeMug (Subclass of Cup) with fields: boolean hasDesign

• Glass (Subclass of Cup) with fields: String pattern, boolean opaque

• Plate (Subclass of Crockery) with fields: String colour, boolean isFlat, String
material

4.3 Functionalities
The following is a list of scenarios which relate to the examples above.

• Loosely match fields with different names if a) they have the same type and
have not already been matched, and b) if the Java and ontology class names
match. In the Cars example, the Java field wheels would be loosely matched
to numberO fWheels, horsepower and doors in the ontology as the latter are
unmatched and have the same type as wheels. This example shows that Java
fields with no match on name can be matched by type.

• In a Java class if a field is a non-primitive type (most likely a user-defined
class), and the fields do not match the ontology completely then the system
could inspect the user defined class and check its fields. In the Cars example
this would allow the algorithm to deduce that class Car effectively has the
fields: String colour, int wheels, int horsepower, and boolean turbo. This
combined list of fields matches the ontology better as the process increases
the number of field matches by two. This example states that Java fields
with a non-primitive type can have their fields combined with those of the
top-level class.

• If two superclasses match, their subclasses are likely to match. In the Cups
example the classes (Java) Mug and (ontology) Co f f eeMug do not match
on name or type, however they both have superclasses Cup which do match.
The system would suggest this as a match, and in this situation it would be
correct. This example states that if two classes share a superclass, then they
potentially match.

• Missing inheritance – Super and subclass exist in Java, only the subclass
exists in Ontology. The system should point out the (potentially) missing
superclass to the user. Conversely, the same is reported when the ontology

8



has a superclass that the Java does not have. In the Cups example the class
Plate is present in both sources and matches by name and fields, however
the Java program does not have the superclass Crockery that exists in the
ontology. This is flagged as a potential Inheritance Problem. This example
indicates that if two classes match but only one of them has a superclass,
then the other is assumed to be missing.

• If a class is “misnamed” in Java, the system could look for any class in
the ontology with similar fields and infer a possible match if more than a
predetermined number of the fields match. In the Cups example the class
Tumbler in Java and the class Glass in the Ontology have the same fields,
and would be marked as a possible match. This example indicates that if two
classes have similar fields, then they might match.

5 EVALUATION
To determine if Facilitator can process a wide range of Java projects/ontologies a
set of tests were conducted. There were three Java projects, and three ontologies
involved in the test. For each combination, the time to parse each component was
recorded. The matching times were not recorded, as they run in less than a second
when there are no matches. A study of the matcher performance appears in Section
5.1, where two sets of related Java projects and ontologies are compared.

The three Java projects were:

• Facilitator – The code for this project (19 classes, 3643 lines – parsed in
0.001 seconds).

• TDWB – Code from the TDWB system (Sleeman et al., 2014), used for
discovering patterns in temporal data (62 classes, 20007 lines – parsed in 2
seconds).

• Xerces – Apache Xerces project8 which is an XML parser written in Java
(707 classes, 216744 lines – parsed in 20 seconds).

The three ontologies were:

• Eng UoL quONTOm – quONTOm9 project based in the University of Lodz,
Poland containing details about quantum physics (58 concepts – parsed in
0.001 seconds).

• Ling GOLD 2010 – GOLD (General Ontology for Linguistic Description)10

is an ontology for descriptive linguistics (last updated in 2010). Source ap-
pears to be the E-MELD project (503 concepts – parsed in 0.001 seconds).

• Chem RSoC CMO – Chemical Methods Ontology from the Royal Society
of Chemistry11 (2358 concepts – parsed in 0.001 seconds).

5.1 Matcher Performance
To test the performance of the matcher algorithm, it is important to use two related
sources so that at least some matches exist. To this end, there are two sets of Java
projects and ontologies that are comparable:

• Cups Advanced – This consists of an ontology (6 concepts) which was ex-
tended from a cup theory (Winston et al., 1983). The corresponding Java

8http://xerces.apache.org/
9http://merlin.phys.uni.lodz.pl/quONTOm/

10http://datahub.io/dataset/gold
11http://www.rsc.org/ontologies/CMO/

9

http://xerces.apache.org/
http://merlin.phys.uni.lodz.pl/quONTOm/
http://datahub.io/dataset/gold
http://www.rsc.org/ontologies/CMO/


source (4 classes, 41 lines) was constructed to match the ontology, with a
few differences introduced. Matching was run in 0.001 seconds, with 1 out
of 6 classes being reported as matching exactly.

• Xerces – Discussed above, and based on the Apache Xerces project which
is an XML parser written in Java (707 classes, 216744 lines). Skeleton cre-
ation was used to make an ontology (743 concepts) which matched the Java
source. Matching was run in 26 seconds, with 515 out of 743 classes match-
ing exactly.

5.2 User Experiments
We are currently carrying out user experiments to ascertain if/how Facilitator can
support the various stages of software and knowledge engineering. Our initial stud-
ies use as subjects computing science students in their final years and present them
with a fragment of a Java program (printed on paper) and an ontology (represented
as a UML diagram and printed on paper) and ask them to perform a series of tasks
with and without the aid of Facilitator. We designed a questionnaire to get the sub-
ject’s opinion on whether they agree with the suggestions made by Facilitator. In
this initial study, we present participants with the results from Facilitator and only
have them use Facilitator as an informal task at the end of the study. In a future
study we intend to have participants use Facilitator directly to help them locate and
correct a complex bug within a piece of software.

The Java/Ontology source used in the first experiment is the Cups example
from Section 4.2. The questionnaire that participants were asked to fill out con-
sisted of a list of all the matches produced by Facilitator, and it provides space to
explain whether they agree or disagree with each match. We have not yet com-
pleted enough of this study to produce meaningful quantitative data, but informal
feedback provided by the participants on the Facilitator software has so far been
positive, and the features they have requested were already planned to be imple-
mented in the near future. For example, one of them asked if there was a way to
view the ontology as a graph, which is discussed in Section 6.

5.3 Comparison with Existing Work
We compare Facilitator with related work surveyed in Section 2). RDFReactor12

performs a subset of Facilitator’s features – it provides a similar functionality to
skeleton creation, but with no matching facility. TwoUse (Parreiras et al., 2007)
discusses combining UML and Ontologies, which would suggest it applies to the
design phase – whereas Facilitator works with source code in the implementation
phase. The tool proposed by Hruby (2005) is the most similar to Facilitator in that
it also proposes mapping software to an ontology. However, rather than mapping
two specific sources together it deals with situations in which you have an exist-
ing piece of software and then the tool will determine the appropriate domain and
locate an ontology automatically. Reviewing the paper it is not clear where they
get these ontologies from (e.g. searching the web or a centralised repository). Ad-
ditionally, the method seems to just consider simple concept relationships without
performing any reasoning.

12http://semanticweb.org/wiki/RDFReactor

10

http://semanticweb.org/wiki/RDFReactor


6 DISCUSSION, CONCLUSIONS & FUTURE
WORK

Facilitator encountered a problem (caused by the differences between ontology
and Java structures) when dealing with classes with the same name. Within a Java
project, there can be multiple classes with the same name occurring in different
packages. In contrast, an ontology can only contain one class with a given name.
This creates an inconsistency when converting between the formats (through the
skeleton creation features) as the multiple Java classes are automatically merged
into a single class conglomeration (union operation) in the ontology. The same
problem occurs with fields. Facilitator has been designed in such a way that this
problem does not affect the regular running of the system, it is only when creating
a skeleton (specifically creating an Ontology skeleton from Java) that the issue
arises. After analysing possible solutions to the problem, it was decided to pre-
process Java classes to add numbers to disambiguate class names.

This solution allowed the system to retain all classes, without requiring user in-
tervention. However, a further problem remains. If one of the “duplicate” classes
was a parent of another class, that child class would now be pointing to an am-
biguous class name. This problem was overcome by using Java import statements
of a class to resolve the package of the parent class. Since a package can only
contain one class of a given name, knowing the package allowed unambiguous
identification of the parent class.

We report on work aiming at bridging the gap between software and knowledge
engineers. We developed a tool, Facilitator, as a proof-of-concept prototype to im-
plement various functionalities to support knowledge-based software engineering.
We present an overview of the techniques used by Facilitator to make use of on-
tologies in the implementation phase of the software development process. This
has included a review of other tools with a similar purpose, a detailed overview of
how Facilitator performs the matching process, discussion of some of the impor-
tant functionalities of Facilitator, and a list of planned features of Facilitator.

Connecting software design and domain knowledge has the potential to in-
crease the productivity of programmers by automatically spotting misconceptions
at an earlier stage. Similarly, a mismatch between software and domain knowl-
edge could result in the latter being revised. There are also advantages of explicitly
modelling knowledge in software as well articulated components.

We have reported some preliminary results from evaluation studies earlier in
Section 5.2; more extensive evaluations are planned.

Two major additional system features are planned: Harmonisation and On-
tology Graphing. Harmonisation is a proposed feature of Facilitator, where the
system can make specific, user-specified changes/corrections to an existing project
based on another source. Ontology Graphing will use a graphing API to display
ontology source as a UML-like graph, with the further possibility of overlaying
matches onto this graph.

ACKNOWLEDGEMENTS
The first author would like to acknowledge the support of the University of Ab-
erdeen, Development Trust Intelligent System Fund.

We would also like to thank Dr. Honghan Wu and Dr. Yuan Ren from the
University of Aberdeen for their insight into the current state of Knowledge-Based
Software Engineering.

11



REFERENCES
Carbonara, L. and Sleeman, D. (1999). Effective and efficient knowledge base

refinement. Machine Learning, 37(2):143–181.
Cauvin, S. R. (2014). Towards knowledge-intensive software engineering. Hon-

ours B.Sc. Dissertation, Dept. of Comp Sci, University of Aberdeen.
Gasevic, D., Djuric, D., Devedzic, V., and Damjanovi, V. (2004). Converting uml

to owl ontologies. In Procs of the 13th International WWW Conference.
Happel, H.-J. and Seedorf, S. (2006). Applications of ontologies in software engi-

neering. In Proc. of Workshop on Sematic Web Enabled Software Engineer-
ing (SWESE) on the ISWC.

Havlice, Z., Adamuščı́nová, I., Pločica, O., Révés, M., and Železnı́k, O. (2009).
Knowledge based software engineering. Computer Science and Technology
Research Survey, elfa, Kosice, pages 1–10.

Hruby, P. (2005). Ontology-based domain-driven design. In OOPSLA Workshop
on Best Practices for Model-Driven Software Development, San Diego, CA,
USA.

Kravets, A., Shcherbakov, M., Kultsova, M., and Iijima, T. (2014). Knowledge-
Based Software Engineering: 11th Joint Conference, JCKBSE, volume 466.
Springer.

Pan, J. Z., Staab, S., Aßmann, U., Ebert, J., and Zhao, Y. (2012). Ontology-Driven
Software Development. Springer.

Parreiras, F. S., Staab, S., and Winter, A. (2007). Twouse: Integrating uml mod-
els and owl ontologies. Technical Report 16/2007, Institut für Informatik,
Universität Koblenz-Landau.

Parreiras, F. S., Staab, S., and Winter, A. (2008). Improving design patterns by
description logics: A use case with abstract factory and strategy. In Model-
lierung 2008, 12.-14. Mrz 2008, Berlin.

Quasthoff, M. and Meinel, C. (2008). Semantic web admission free–obtaining rdf
and owl data from application source code. In 4th International Workshop
on Semantic Web Enabled Software Engineering.

Sleeman, D., Moss, L., and Kinsella, J. (2014). Temporal discovery workbench:
a case study with icu patient datasets. In BCS Health Informatics Scotland
Conference, Glasgow.

Staab, S., Walter, T., Grner, G., and Parreiras, F. S. (2010). Model driven engineer-
ing with ontology technologies. In Reasoning Web. Semantic Technologies
for Software Engineering, volume 6325.

Winston, P. H., Binford, T. O., Katz, B., and Lowry, M. (1983). Learning phys-
ical descriptions from functional definitions, examples, and precedents. In
National Conf on A.I.

12


	Introduction
	Background & Related Work
	System Description
	Goals
	Methodology
	Functional Requirements
	Architecture
	Technologies
	Java Parser
	Ontology Access
	Stemming

	Taxonomy of Types
	Matching Process

	Illustrative Scenarios
	Cars Example
	Cups Example
	Functionalities

	Evaluation
	Matcher Performance
	User Experiments
	Comparison with Existing Work

	Discussion, Conclusions & Future Work

