51 research outputs found

    Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

    Full text link
    Continuous-wave squeezed states of light at the wavelength of 1550 nm have recently been demonstrated, but so far the obtained factors of noise suppression still lag behind today's best squeezing values demonstrated at 1064 nm. Here we report on the realization of a half-monolithic nonlinear resonator based on periodically-poled potassium titanyl phosphate which enabled the direct detection of up to 12.3 dB of squeezing at 5 MHz. Squeezing was observed down to a frequency of 2 kHz which is well within the detection band of gravitational wave interferometers. Our results suggest that a long-term stable 1550 nm squeezed light source can be realized with strong squeezing covering the entire detection band of a 3rd generation gravitational-wave detector such as the Einstein Telescope

    High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity

    Full text link
    We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.Comment: 8 pages, 4 figure

    Gaussian entanglement distribution with gigahertz bandwidth

    Full text link
    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically-proven secure key for quantum cryptography. The distributed secret key rate is limited by the {entanglement strength, the entanglement bandwidth and the bandwidth of the photo-electric detectors}. The development of a source for strongly, bi-partite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25\,GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300\,MHz to about 2.8 at 1.2\,GHz extending further to about 3.1 at 1.48\,GHz. In the experiment we used two 2.6\,mm long monolithic periodically poled potassium titanyl phosphate (PPKTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550\,nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.Comment: 5 pages, 3 figures, published in Optics Letter

    Observation of continuous-wave squeezed light at 1550 nm

    Get PDF
    We report on the generation of continuous-wave squeezed vacuum states of light at the telecommunication wavelength of 1550 nm. The squeezed vacuum states were produced by type I optical parametric amplification (OPA) in a standing-wave cavity built around a periodically poled potassium titanyl phosphate (PPKTP) crystal. A non-classical noise reduction of 5.3 dB below the shot noise was observed by means of balanced homodyne detection.Comment: 4 pages, 3 figure

    High-efficiency frequency doubling of continuous-wave laser light

    Full text link
    We report on the observation of high efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of (95 \pm 1)%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the non-perfect mode-matching into the nonlinear cavity and the pump power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.Comment: 3 pages, 3 figure

    Optical absorption measurements for third generation gravitational wave detectors

    Get PDF
    [no abstract
    • …
    corecore