58 research outputs found

    Hybrid Zero Dynamics of Planar Biped Walkers

    Get PDF
    Planar, underactuated, biped walkers form an important domain of applications for hybrid dynamical systems. This paper presents the design of exponentially stable walking controllers for general planar bipedal systems that have one degree-of-freedom greater than the number of available actuators. The within-step control action creates an attracting invariant set—a two-dimensional zero dynamics submanifold of the full hybrid model—whose restriction dynamics admits a scalar linear time-invariant return map. Exponentially stable periodic orbits of the zero dynamics correspond to exponentially stabilizable orbits of the full model. A convenient parameterization of the hybrid zero dynamics is imposed through the choice of a class of output functions. Parameter optimization is used to tune the hybrid zero dynamics in order to achieve closed-loop, exponentially stable walking with low energy consumption, while meeting natural kinematic and dynamic constraints. The general theory developed in the paper is illustrated on a five link walker, consisting of a torso and two legs with knees

    Systematic Controller Design for Dynamic 3D Bipedal Robot Walking.

    Full text link
    Virtual constraints and hybrid zero dynamics (HZD) have emerged as a powerful framework for controlling bipedal robot locomotion, as evidenced by the robust, energetically efficient, and natural-looking walking and running gaits achieved by planar robots such as Rabbit, ERNIE, and MABEL. However, the extension to 3D robots is more subtle, as the choice of virtual constraints has a deciding effect on the stability of a periodic orbit. Furthermore, previous methods did not provide a systematic means of designing virtual constraints to ensure stability. This thesis makes both experimental and theoretical contributions to the control of underactuated 3D bipedal robots. On the experimental side, we present the first realization of dynamic 3D walking using virtual constraints. The experimental success is achieved by augmenting a robust planar walking gait with a novel virtual constraint for the lateral swing hip angle. The resulting controller is tested in the laboratory on a human-scale bipedal robot (MARLO) and demonstrated to stabilize the lateral motion for unassisted 3D walking at approximately 1 m/s. MARLO is one of only two known robots to walk in 3D with stilt-like feet. On the theoretical side, we introduce a method to systematically tune a given choice of virtual constraints in order to stabilize a periodic orbit of a hybrid system. We demonstrate the method to stabilize a walking gait for MARLO, and show that the optimized controller leads to improved lateral control compared to the nominal virtual constraints. We also describe several extensions of the basic method, allowing the use of a restricted Poincaré map and the incorporation of disturbance rejection metrics in the optimization. Together, these methods comprise an important contribution to the theory of HZD.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113370/1/bgbuss_1.pd

    Stabilizing Highly Dynamic Locomotion in Planar Bipedal Robots with Dimension Reducing Control.

    Full text link
    In the field of robotic locomotion, the method of hybrid zero dynamics (HZD) proposed by Westervelt, Grizzle, and Koditschek provided a new solution to the canonical problem of stabilizing walking in planar bipeds. Original walking experiments on the French biped RABBIT were very successful, with gaits that were robust to external disturbances and to parameter mismatch. Initial running experiments on RABBIT were cut short before a stable gait could be achieved, but helped to identify performance limiting aspects of both the physical hardware of RABBIT and the method of hybrid zero dynamics. To improve upon RABBIT, a new robot called MABEL was designed and constructed in collaboration between the University of Michigan and Carnegie Mellon University. In light of experiments on RABBIT and in preparation for experiments on MABEL, this thesis provides a theoretical foundation that extends the method of hybrid zero dynamics to address walking in a class of robots with series compliance. Extensive new design tools address two main performance limiting aspects of previous HZD controllers: the dependence on non-Lipschitz finite time convergence and the lack of a constructive procedure for achieving impact invariance when outputs have relative degree greater than two. An analytically rigorous set of solutions - an arbitrarily smooth stabilizing controller and a constructive parameter update scheme - is derived using the method of Poincare sections. Additional contributions of this thesis include the development of sample-based virtual constraints, analysis of walking on a slope, and identification of dynamic singularities that can arise from poorly chosen virtual constraints.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/58477/1/morrisbj_1.pd

    Feedback Control of Dynamic Bipedal Robot Locomotion

    Full text link

    Modeling, analysis and control of robot-object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives

    Get PDF
    International audienceSo-called robot-object Lagrangian systems consist of a class of nonsmooth underactuated complementarity Lagrangian systems, with a specific structure: an "object" and a "robot". Only the robot is actuated. The object dynamics can thus be controlled only through the action of the contact Lagrange multipliers, which represent the interaction forces between the robot and the object. Juggling, walking, running, hopping machines, robotic systems that manipulate objects, tapping, pushing systems, kinematic chains with joint clearance, crawling, climbing robots, some cable-driven manipulators, and some circuits with set-valued nonsmooth components, belong this class. This article aims at presenting their main features, then many application examples which belong to the robot-object class, then reviewing the main tools and control strategies which have been proposed in the Automatic Control and in the Robotics literature. Some comments and open issues conclude the article

    Dynamic Bipedal Locomotion: From Hybrid Zero Dynamics to Control Lyapunov Functions via Experimentally Realizable Methods

    Get PDF
    Robotic bipedal locomotion has become a rapidly growing field of research as humans increasingly look to augment their natural environments with intelligent machines. In order for these robotic systems to navigate the often unstructured environments of the world and perform tasks, they must first have the capability to dynamically, reliably, and efficiently locomote. Due to the inherently hybrid and underactuated nature of dynamic bipedal walking, the greatest experimental successes in the field have often been achieved by considering all aspects of the problem; with explicit consideration of the interplay between modeling, trajectory planning, and feedback control. The methodology and developments presented in this thesis begin with the modeling and design of dynamic walking gaits on bipedal robots through hybrid zero dynamics (HZD), a mathematical framework that utilizes hybrid system models coupled with nonlinear controllers that results in stable locomotion. This will form the first half of the thesis, and will be used to develop a solid foundation of HZD trajectory optimization tools and algorithms for efficient synthesis of accurate hybrid motion plans for locomotion on two underactuated and compliant 3D bipeds. While HZD and the associated trajectory optimization are an existing framework, the resulting behaviors shown in these preliminary experiments will extend the limits of what HZD has demonstrated is possible thus far in the literature. Specifically, the core results of this thesis demonstrate the first experimental multi-contact humanoid walking with HZD on the DURUS robot and then through the first compliant HZD motion library for walking over a continuum of walking speeds on the Cassie robot. On the theoretical front, a novel formulation of an optimization-based control framework is introduced that couples convergence constraints from control Lyapunov functions (CLF)s with desirable formulations existing in other areas of the bipedal locomotion field that have proven successful in practice, such as inverse dynamics control and quadratic programming approaches. The theoretical analysis and experimental validation of this controller thus forms the second half of this thesis. First, a theoretical analysis is developed which demonstrates several useful properties of the approach for tuning and implementation, and the stability of the controller for HZD locomotion is proven. This is then extended to a relaxed version of the CLF controller, which removes a convergence inequality constraint in lieu of a conservative CLF cost within a quadratic program to achieve tracking. It is then explored how this new CLF formulation can fully leverage the planned HZD walking gaits to achieve the target performance on physical hardware. Towards this goal, an experimental implementation of the CLF controller is derived for the Cassie robot, with the resulting experiments demonstrating the first successful realization of a CLF controller for a 3D biped on hardware in the literature. The accuracy of the robot model and synthesized HZD motion library allow the real-time control implementation to regularize the CLF optimization cost about the nominal walking gait. This drives the controller to choose smooth input torques and anticipated spring torques, as well as regulate an optimal distribution of feasible ground reaction forces on hardware while reliably tracking the planned virtual constraints. These final results demonstrate how each component of this thesis were brought together to form an effective end-to-end implementation of a nonlinear control framework for underactuated locomotion on a bipedal robot through modeling, trajectory optimization, and then ultimately real-time control.</p

    Instantaneous Momentum-Based Control of Floating Base Systems

    Get PDF
    In the last two decades a growing number of robotic applications such as autonomous drones, wheeled robots and industrial manipulators started to be employed in several human environments. However, these machines often possess limited locomotion and/or manipulation capabilities, thus reducing the number of achievable tasks and increasing the complexity of robot-environment interaction. Augmenting robots locomotion and manipulation abilities is a fundamental research topic, with a view to enhance robots participation in complex tasks involving safe interaction and cooperation with humans. To this purpose, humanoid robots, aerial manipulators and the novel design of flying humanoid robots are among the most promising platforms researchers are studying in the attempt to remove the existing technological barriers. These robots are often modeled as floating base systems, and have lost the assumption -- typical of fixed base robots -- of having one link always attached to the ground. From the robot control side, contact forces regulation revealed to be fundamental for the execution of interaction tasks. Contact forces can be influenced by directly controlling the robot's momentum rate of change, and this fact gives rise to several momentum-based control strategies. Nevertheless, effective design of force and torque controllers still remains a complex challenge. The variability of sensor load during interaction, the inaccuracy of the force/torque sensing technology and the inherent nonlinearities of robot models are only a few complexities impairing efficient robot force control. This research project focuses on the design of balancing and flight controllers for floating base robots interacting with the surrounding environment. More specifically, the research is built upon the state-of-the-art of momentum-based controllers and applied to three robotic platforms: the humanoid robot iCub, the aerial manipulator OTHex and the jet-powered humanoid robot iRonCub. The project enforces the existing literature with both theoretical and experimental results, aimed at achieving high robot performances and improved stability and robustness, in presence of different physical robot-environment interactions
    • …
    corecore