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Hybrid Zero Dynamics of Planar Biped Walkers

Abstract

Planar, underactuated, biped walkers form an important domain of applications for hybrid dynamical systems.
This paper presents the design of exponentially stable walking controllers for general planar bipedal systems
that have one degree-of-freedom greater than the number of available actuators. The within-step control
action creates an attracting invarijant set—a two-dimensional zero dynamics submanifold of the full hybrid
model—whose restriction dynamics admits a scalar linear time-invariant return map. Exponentially stable
periodic orbits of the zero dynamics correspond to exponentially stabilizable orbits of the full model. A
convenient parameterization of the hybrid zero dynamics is imposed through the choice of a class of output
functions. Parameter optimization is used to tune the hybrid zero dynamics in order to achieve closed-loop,
exponentially stable walking with low energy consumption, while meeting natural kinematic and dynamic
constraints. The general theory developed in the paper is illustrated on a five link walker, consisting of a torso
and two legs with knees.
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Hybrid Zero Dynamics of Planar Biped Walkers

E. R. WesterveltStudent Member, IEEB. W. Grizzle Fellow, IEEE and D. E. KoditschekSenior Member, IEEE

Abstract—Planar, underactuated, biped walkers form an
important domain of applications for hybrid dynamical systems.
This paper presents the design of exponentially stable walking
controllers for general planar bipedal systems that have one
degree-of-freedom greater than the number of available actuators.
The within-step control action creates an attracting invariant
set—a two-dimensional zero dynamics submanifold of the full
hybrid model—whose restriction dynamics admits a scalar linear
time-invariant return map. Exponentially stable periodic orbits of
the zero dynamics correspond to exponentially stabilizable orbits
of the full model. A convenient parameterization of the hybrid
zero dynamics is imposed through the choice of a class of output
functions. Parameter optimization is used to tune the hybrid zero
dynamics in order to achieve closed-loop, exponentially stable
walking with low energy consumption, while meeting natural
kinematic and dynamic constraints. The general theory developed D
in the paper is illustrated on a five link walker, consisting of a 2 »l
torso and two legs with knees. % A

Index Terms—Bipeds, hybrid systems, Poincaré sections, under- rig 1. Higher DOF robot model. Cartesian coordinates are indicated at the
actuated system, zero dynamics. hips and the leg ends.

h

preting the constraints as output functions, and then combining
ideas from computed torque and finite-time stabilization. The
A PLANAR biped walker is a robot that locomotes via altatter property was used to reduce the stability analysis of the
ternation of two legs in the sagittal plane (see Fig. 1). Th@sulting walking motions to the computation and analysis of a
models for such robots are necessarily hybrid, consisting of @e dimensional Poincaré map. In these control designs, it was
dinal‘y differential equations to describe the motion of the robgbserved that Various parameters appearing in the h0|onomic
when only one leg is in contact with the ground (single suppatbnstraints would affect the walking speed, the torques required
or swing phase of the walking motion), and a discrete map {§ achieve walking, etc., but no systematic method for adjusting
model the impact when the second leg touches the ground [g9d parameters was presented.
(double support phase). The complexity of controlling such aThjs paper introduces an important improvement on the pre-
system is a function of the number of degrees of freedom of thg,s design methodology by affording a common framework
model as well as the degree of actuation or, more precisedy, for stability analysis and performance enhancement. The frame-
deractuationof the system. work provides systematic design of feedback controllers that
For planar, biped walkers with a torso ande degree of jchieve exponentially stable walking motions Aflink, one
underactuation it was shown for the first time in [24] for a gegree of underactuation, planar biped models, while affording
three-link model, and in [45] for a 5-link model, that these sygdjustment of additional figures of merit, for example, energy
tems admit control designs with provable stability propertiegonsumption, as well. Specifically, a within-step controller is
The control designs involved the judicious choice of a set gkvised whose closed loop incorporates a two-dimensional sub-
holonomic constraints that were asymptotically imposed on tiganifold—the zero set of an appropriately parameterized output
robot via feedback control. This was accomplished by intefnap—that is an attracting invariant set with respect to the full
hybrid model. The selection of this zero dynamics through the
Manuscript received December 19, 2001, revised June 1, 2002 and Novengapice of output map parameters affords the choice of practi-
1,2002. Recommended by Associate Editor P. Tomei. The work of J. W. Grizgt@ble kinematic, torque, and power ranges, all while respecting
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models in the animal nervous system [36], and the emerging ¢vese introduced in [24] and [45]. Section Il first develops
idence that these models incorporate a state-event based (aslapzero dynamics of the swing phase of the model [24], [39]
posed to explicit time-based) representations of the plant [18king general results in [31]. This establishes a foundation for
it seems plausible to hypothesize that task encoding via interdefining the zero dynamics of a hybrid dynamical system along
target dynamics may also play a significant role in animal mot@rith a general statement of existence conditions.
control [21]. Previous work on legged locomotion has touched In Section IV it is demonstrated that the Poincaré map as-
on this concept without clearly articulating or exploiting its fulsociated with the hybrid zero dynamics is diffeomorphic to a
potential. Sano and Furusho [56] regulated angular momentsgalar, linear time-invariant (LTI) system. This renders the sta-
as a means of inducing locomotion; Goswaehal. [22] regu- bility properties of the zero dynamics transparent. A means for
lated total energy; and Kajita and Tani [34] approximated theomputing the exact upper and lower bounds of the domain
robot as an inverted pendulum, regulating its center of mas$.definition of the Poincaré map is also given. The section is
Onoet al.[43] slave the control to one of the states of the systemlposed with a summary of the feedback methodology of [24]
instead of time (see also [44] where this idea is applied to the aghich is shown to take exponentially stable orbits of the hybrid
robot). Pratet al.[46], [47] achieved a reduction in complexityzero dynamics to exponentially stable orbits of the full model.
through a proposed set of walking principles, such as main-Section V addresses issues associated with computing the hy-
taining the torso at a constant angle and the hips at a constard zero dynamics in closed form so that they may be effec-
height above the ground while moving one foot in front of thévely exploited for design via parameter optimization. This is
other. Although in that work, the “target” is first order (gradientaccomplished by specializing to a class of outputs defined by a
dynamics, the leg transitions are imposed by event driven logiinear function of the state plus a nonlinear function of a scalar
and it is unclear over what range of initial conditions and pevariable. The nonlinear function is further specialized to Bézier
turbations the physical second order hybrid closed-loop syst@miynomials [6], which provide a very convenient parameteri-
may ultimately succeed in maintaining a stable gait. In all sudation for imposing a variety of constraints associated with the
approaches, mechanisms comparable to those developed bgistence of the hybrid zero dynamics and the periodicity of de-
impose kinematic or dynamic constraints, enforcing, over tisred walking motions, among others.
Lagrangian (i.e., away from impact conditions) portion of the In Section VI, a framework for the creation of exponentially
state space, low dimensional attracting submanifolds. Here stable fixed points through optimization is given. Optimization
contrast, as in [11], [41], and [49], the attracting submanifoldllows the shaping of the hybrid zero dynamics while satisfying
is also designed to be an invariant set of the Lagrangian paatural kinematic and dynamic constraints. The result of the
tion of the closed-loop system whose restriction dynamics (tbetimization process is not an optimal trajectory but rather a
zero dynamics in this paper) emerges from the robot’'s motignovably stable, closed-loop system with satisfied design con-
itself. However, unlike any previous work, in this paper, the fulitraints.
hybrid zero dynamics (i.e., the entire reduced order motion of Section VII illustrates the presented framework for stability
the mechanism including both the Lagrangian and the impaialysis and performance enhancement on a 5-link biped model
portions) is rendered invariant. In this sense, our present reswisich is under construction by the French projgommande de
combine the analytical machinery developed in [24] and [4Bobots a Pattesf the CNRS—GdR Automatiq(iE].
with the notion of a dynamically targeted postural prescription
[41], [57] to provide the first rigorous methodology for a lower
dimensional hybrid target dynamics. Note that [60] can be in-
terpreted as providing a similar result for fully actuated systemsThis section introduces the class of biped walking models, the
and a target dynamics having the same dimension as the systemtral concern of the paper. The model considered is a planar
being controlled. open kinematic chain connected at a single joint called the “hip,”
The notion of hybrid zero dynamics is an extension of theomprising two identical open chains called the “legs,” and a
notion of zero dynamics for systems described by ordinary difiird called the “torso.” As depicted in Fig. 1, intentionally sug-
ferential equations. While the zero dynamics for a system magkstive of a human figure, conditions that guarantee the torso
eled by ordinary differential equations is a well-known [31] antemains free in the air, while the legs alternate in ground con-
increasingly used concept, [5], [33], [51], [59], the hybrid zertact will be imposed. All motions will be assumed to take place
dynamics is a novel notion developed in this paper to deal wiith the sagittal plane and consist of successive phasssgle
the impact map that is common in legged locomotion modeksupport(meaning the stance leg is touching the walking surface
The hybrid zero dynamics may be defined analogously to thed the swing leg is not) ardbuble suppor{the swing leg and
zero dynamics: the largest internal dynamics compatible withe stance leg are both in contact with the walking surface).
the output being identically zero. The central concern of the The two phases of the walking cycle naturally lead to a math-
paper is to establish a constructive approach to the definitioneyhatical model of the biped consisting of two parts: the differ-
hybrid zero dynamics resulting in useful controllers for robotiential equations describing the dynamics during the single sup-
walking. The zero dynamics of the swing phase portion of thgort phase, and a model of the dynamics of the double support
model have been previously studied in [39] in the context of trahase. In order to avoid the “stiffness” associated with including
jectory planning and tracking for an underactuated biped. a second differential equation to model the rapid evolution of
The paper is structured as follows. Section Il delineates ttiee robot’s state at the impact time [10], [38], [54], it will be as-
class of robot models treated here, in particular, subsumisgmed that the transition from one leg to another takes place in

Il. ROBOT MODEL AND MODELING ASSUMPTIONS
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an infinitesimal length of time [20], [58]; this assumption entailé&.. Swing Phase Model

the use of a rigid contact model to describe the impulsive nature y,qer GH2) the dynamic model of the robot during the swing

of the impact of t.he swing leg with the ground. The rigid consp4ce hasv-DOF. Letq := (qu,....qy) be a set of angular

tact model effectively collapses the double support phase 0 @hginates describing the configuration of the robot with world
instantin time, and allows a discontinuity in the velocity compQference framéV . Since only symmetric gaits are of interest
nent of the state, with the configuration remaining continlOUgere, the same model can be used irrespective of which leg is
The biped model is, thusiybridin nature, consisting of a Con-yhe stance leg if the coordinates are relabeled after each phase

tinuous dynamics and a reinitialization rule at the contact evegt.qouple support. Using the method of Lagrange, the model is
An important source of complexity in a biped system is thgritten in the form

degree of actuation of the system, or more precisely, the degree
of underactuatiorof the system. It will be assumed that there D(q)i+ C(q,4)4 + G(q) = Bu. (1)
is no actuation at the end of the stance leg. Thus the system is . .
underactuated during walking, as opposed to fully actuatedl1 accordalmtzjel;/w:h RH4) an: RHS), ttc_Jrunfss - Il o N _t
control at each joint and the contact point with the ground). are applied between each connection of two wtb_m; no
A complete list of hypotheses assumed for the robot mo(]%(ftween the stancg I_eg and groufitie model is written in state-
and the desired walking gaits is now enumerated. space form by defining
Robot HypothesesThe robot is assumed to be: ) { g

A 2
RH1) comprised ofV rigid links with mass, connected by D~Y(q)[-C(q,3)d — G(q) + Bu] @)
revolute joints with no closed kinematic chains; =:f(z) + g(z)u 3)
RH2) planar, with motion constrained to the sagittal plane;
RH3) bipedal, with identical legs connected at a commo\,ﬁ
point called the hips;
RH4) actuated at each joint;
RH5) unactuated at the point of contact between the sta
leg and ground.

herez := (¢/,¢’)’. The state space of the model is taken as
Q = {z:=(¢,¢)]q € Q,4 € RV}, whereQ is a simply
connected, open subset[of27)™ corresponding to physically
r{ggsonable configurations of the robot (for example, with the
exception of the end of the stance leg, all points of the robot
being above the walking surface; one could also impose that

Gait Hypotheses:Conditions on the controller will be im- the knees are not bent backward, etc.). An alternate approach,
posed and shown to insure that the robot’s consequent motiwt used here, would be to define the admissible states through
satisfies the following properties consistent with the intuitiveiability constraints [3], [10].

notion of a simple walking gait.

, ) B. Impact Model
GH1) There are alternating phases of single support and ) _
double support. An impact occurs when the swing leg touches the walking

GH2) During the single support phase, the stance leg actSkface, also called Fhe ground. The impact between the svyiqg
a pivot joint, that is, throughout the contact, it can pieg and the ground is modeled as a contact between two rigid

guaranteed that the vertical component of the grourpd)dies. In addition to modeling the change in state of the robot,
reaction force is positive and that the ratio of the hotthe impact model accounts for the relabeling of the robot'’s coor-

izontal component to the vertical component does nginates that occurs after each phase of double support. The de-

exceed the coefficient of static friction. velopment of the impact mode! requires'the fuvn + 2)-DOF
GH3) The double support phase is instantaneous and carPhte robot. By adding Cartesian coordlna@%,p}%) to the
modeled as a rigid contact [30]. hips (see Fig. 1), the following extended model is easily ob-

GH4) Atimpact, the swing leg neither slips nor rebounds. t&ined through the method of Lagrange:

GHb5) In steady state, successive phases of single support arep, e Vo + G - B §F 4
symmetric with respect to the two legs. (4:)e & CelGe; 4o )de + Gelge) = Beut 8Fexe (4)

GH6) Walkingis from leftto right, so thatthe swing leg startsith q. := (g1, g2, ..., qn, %, p%)" and wheredF... repre-
from behind the stance leg and is placed strictly in frorfents the vector of external forces acting on the robot at the con-
of the stance leg at impact. tact point. If the stance leg end is in contact with the ground and

RH1) and RH2) imply the robot hagV + 2)-degrees-of- not slipping, the extended coordinatgsand their velocitieg,

freedom (DOFs) ¥ joint angles plus the Cartesian coordinate®'® related tg andq by

of the hips, for example). RH4), RH5), and GH2) imply that ] aY(q) .

when walking the robot has one degree of underactuation, i.e., q. = Y(q) andq. = 3—(]‘1 Q)
one less control than DOF. It is worth noting that even if there

were actuation between the stance leg end and ground, it wowldere Y (¢) := (¢, p(q), i (q))', andp(q) andpy(q) are

be worthwhile to first design a controller under hypothesis RH#})e horizontal and vertical positions of the hip, respectively.
and then add an outer control loop to exploit the torque availablelmpact Model HypothesesThe impact model of [30] is used
at the ankle in order to improve the convergence rate of walkitgder the following assumptions.

to a desired average forward walking rate or to enlarge the re-IH1) The contact of the swing leg with the ground results in
gion of attraction of the inner controller. no rebound and no slipping of the swing leg.
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IH2) At the moment of impact, the stance leg lifts from the€. Plant Model: A Hybrid Nonlinear Underactuated Control
ground without interaction. System
IH3) The impact is instantaneous. The overall biped robot model can be expressed as a nonlinear
IH4) The exterqal forces during the impact can be rePreystem with impulse effects [64]
sented by impulses.
IH5) The impulsive forces may result in an instantaneous & =f(x) + g(z)u, = ¢8
change in the velocities, but there is no instantaneous ot =A(z7) s cS (13)
change in the configuration.
IH6) The actuators cannot generate impulses and, hence, gayere
be ignored during impact.
IH1)—IH6) imply total angular momentum is conserved [30]. S:={(q,9) € TQIp5(q) = 0,p5(q) > 0} (14)
Following an identical development as in [24], the expression | . LN
relating the velocity of the robot just before impag,, to the anda () := lim, ~ (7). The value ofp3(g) is taken to be

velocity just after (without relabeling),, may be written as positive so that for: € 5 the S_Wing leg end is in front of the .
¥l ( Ol y stance leg as per GHG6). Solutions are taken to be right contin-

?

q+ Do(a=i- uous and must have finite left and right limits at each impact
UYqr) | FY | = { E(qg Jac } (6) event (see [23] for details).
FN Informally, astepof the robot is a solution of (13) that starts
with the robot in double support, ends in double support with
where the configurations of the legs swapped, and contains only one

-1 impact event. This is more precisely defined as follows. Let
(7) o(t,xo) be a maximal solution of the swing phase dynamics
(3) with initial conditionz at timety = 0, and define théime
to impactfunction, 77 : TQ — R U {co}, by
E(q.) = (p%(q.),p5(q.))" are the Cartesian coordinates of the ) )
end of the swing leg (see Fig. 1), ahd and Y are the inte- (z0) { inf{t > 0|p(t,z0) € S} ifIts.t.
To) =

. /
DR((]@,) _(0135136))
OE(q.
o 0

(qe) :==

grals of the tangential and normal contact impulsive forces. The™ ! ‘p(t'/xo), es (19
existence of the matrix inverse indicated in (6) and (7) is easily o0 otherwise.

verified. Solving (6) yields Letzo € S be such thaf; o A(zg) < oo. A stepof the robot

-y is the solution of (13) defined on the half-open intefalT; o

;I;,T () D.(q7)q> ) A(zo)) with initial point zo. Any pointz, € S such thafl; o

F%V =\ 0 ’ A(zg) < oo is said to result in the robot taking a step.

2
The map fromg_ to ¢, that is, the map from velocities just ll. ZERO DYNAMICS OF WALKING
pr_ior to impac_t to j_ust after impact (without relabeling), is 0b- The method of computed torque or inverse dynamics is ubig-
tained by partitionindI(¢;") as uitous in the field of robotics [19], [40], [61]. It consists of
i+ =Ty (q;) D. (q;) i ©) defining a set of outputs, equal in number to the inputs, and

. then designing a feedback controller that asymptotically drives
[f;g\] =11y (qe—) D, (qe—) i (10) the outputs to zero. The task that the robot is to achieve is en-
2 coded into the set of outputs in a such a way that the nulling

Combining (5) with (9) and (10) results in an expression for tH the outputs is (asymptotically) equivalent to achieving the
velocities of the robot just after impact and the integral of tH&Sk, whether the task be asymptotic convergence to an equilib-
forces experienced by the end of the swing leg atimpact. At iffflUm point, a surface, or a time trajectory. For a system mod-
pact, it is assumed that the swing leg becomes the new stafl&d by ordinary differential equations (in particular, no impact
leg, so the coordinates must be relabeled. Express the relabeflgamics), thenaximal internal dynamicsf the system that

of the states as a linear, invertible transformation maRixthe @recompatible with the output being identically zesocalled

result of the impact and relabeling of the states is then an expri§ zero dynamicg31], [32], [42]. Hence, the method of com-
puted torque, which is asymptotically driving a set of outputs to

son zero, is indirectly designing a set of zero dynamics for the robot.
= A(z7) (11) Since, in general, the dimension of the zero dynamics is consid-
) ) o erably less than the dimension of the model itself, the task to be
wherex™ := (q*,¢*) (respectivelyz™ := (¢7,47)) is state chieved by the robot has beienplicitly encoded into a lower
value just after (respectively, just before) impact and dimensional system.
B Ayg~ One of the main points of this paper is that this process can
Alz™) = [AQ(:]I_)Q_} (12)  pe explicitly exploited in the design of feedback controllers

for walking mechanismseven in the presence of impacts
where A, = R and Ay(g7) := Section llI-A will introduce a class of outputs for which the
[R 0] (Y(q7))De(Y(g7)) (0Y(q)/99)| =y - swing phase zero dynamics can be readily identified and
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analyzed. Section IlI-B will derive natural conditions under
which the swing phase zero dynamics become compatible with
the impact model, thereby leading to the notion of a hybrid zero
dynamics for the complete model of the biped.

A. Swing-Phase Zero Dynamics

This section identifies the swing-phase zero dynamics for
a particular class of outputs that have proven useful in con-
structing feedback controllers for bipedal walkers [24], [45].
Since no impact dynamics are involved, the work here is simply
a specialization of the general results in [31] to the model (3).
The results summarized here will form the basis for defining a
zero dynamics of the complete hybrid model of the planar biped
walker, which is the desired object for study.

Note that if an outpuy = h(q) depends only on the configu-
ration variables, then, due to the second order nature of the robot
model, the derivative of the output along solutions of (3) doé(:%%v
not depend directly on the inputs. Hence, its relative degree Is

at least two. Differentiating the output once again computes the . . ~ .
accelerations, resulting in IS a coordinate transformation @rQ. In these coordinates, the

system takes the form

2. Schematic of the five-link robot considered with measurement
entions.

d?y .
P L3h(q,4) + Lo Lgh(q)u. (16) i =ns i = Lih+ LyLshu
. S
The matrixL,Lh(q) is called the decoupling matrix and de- G1=6 &=L+ LyLsbu
pends only on the configuration variables. A consequence of the Yy=m (19)

general results in [31] is that the invertibility of this matrix at .
a given point assures the existence and uniqueness of the Y4767€(¢; ¢) is evaluated at
dynamics in a neighborhood of that point. With a few extra hy- —o (i, &1) (20)
potheses, these properties can be assured on a given open set. 1 7717_11
Lemma 1: (Swing-Phase Zero Dynamicg§uppose that a j= (8_‘1’> [772] _ 1)
smooth functior is selected so that Jq &2
HH1) h is a function of only the configuration coordinates;EnforCmgy =0 resultsin(; = h = 0,75 = Lyh = 0), u* as
HH2) there exists an open WLLC _quch that_for each point ; (17), and the zero dynamics becoming
q € Q, the decoupling matriX,Lsh(q) is square and
invertible (i.e., the dimension afequals the dimension & =&
of y, andh has vector relative degrége, .. .,2)'); é —L20 + Ly L0u’. (22)

HH3) there exists a smooth real valued functifp) such
that[h(q)’, 8(q)]’ : © — R" isadiffeomorphism onto \while it is useful to know that the zero dynamics can be ex-

its image (see Fig. 2 for an examilgy)); pressed as a second order system, this form of the equations is
HH4) there exists at least one pointdhwheref vanishes. very difficult to compute directly due to the need to invert the
Then decoupling matrix. However, this can be avoided. Indeed, since
1) Z .= {xz € TQ| h(z) = 0,Lsh(xz) = 0} is a smooth the columns of in (3) are involutive, by [31, p. 222], in a neigh-
two-dimensional submanifold afQ; borhood of any point where the decoupling matrix is invertible,
2) the feedback control there exists a smooth scalar functigisuch that
u*(x) = —(LyLyh(x)) " Lih(x) 17 m =h(q) m2= Lysh(g,q)
rendersZ invariant under the swing dynamics; that is, for G =0(q) &=7(09) (23)
- everyz € Z, frero(2) 1= f(2) + g(2)ut(2) € T:Z. g 3 valid coordinate transformation and
Z is called thezero dynamics manifoldnd z = f,e0(2) is
called thezero dynamics O Lyy=0. (24)

Lemma 1 follows immediately from general results in [31];
a few of the details are outlined here for later use. From hjloreover, by applying the constructive proof of the Frobenius
potheses HH1) and HH3%(¢) := [, 6(¢)] is a valid coordi- theorem of [31, p. 23] in a set of coordinates for the robot such
nate transformation o@ and, thus that
RH6) the model is expressed v — 1 relativeangular coor-
m =h(q) m2 = Lsh(q.q) dinatesqy, .. .,qx—_1), plus oneabsoluteangular co-

)

§1=0(q) & = Lgb(q.q) (18) ordinate gy
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one obtains thaf can be explicitly computed to be the last entrfgquation (35) becomebsy = —Gxn

of D(q)q, and hence it can be assumed th@t, ¢) has the form

47

—aV/anr, which,
when evaluated o#, is a function of¢; only. O

Y0(q)¢; it follows that (23) is a valid coordinate change on all

of TQ.
In the coordinates (23), the zero dynamics become
1 =Lyt
§2 =Ly (25)
where there right-hand side is evaluated at
g =3"1(0,&) (26)
oh 1 0
T = 9q . 27
1 [70 } {52} 27)

Theorem 1: (Swing-Phase Zero Dynamics Forrnder the
hypotheses of Lemma 1£1, &) = (6(q), v0(q)q) is a valid set

B. Hybrid Zero Dynamics

The goal of this subsection is to incorporate the impact model
into the notion of themaximal internal dynamics compatible
with the output being identically zern order to obtain a zero
dynamics of the complete model of the biped walker, (13). To-
ward this goal, lety = h(q) be an output satisfying the hy-
potheses of Lemma 1 and suppose there exists a trajectoyy,
of the hybrid model (13) along which the output is identically
zero. If the trajectory contains no impacts wihthenz(t) is a
solution of the swing phase dynamics and also of its zero dy-
namics. If the trajectory does contain impact events, then let
(to,ts) be an open interval of time containing exactly one im-
pact att.. By definition, on the intervalgty, t.) and (., ),

of coordinates otr, and in these coordinates the zero dynamiqbs(t) is a solution of the swing phase dynamics and hence also

take the form

(28)
(29)

& =r1(&1)&
€y =ka(&1).

Moreover, if (3) is expressed in coordinates satisfying RH6), tl%(‘” __) ) ) = )
reolutions of the swing phase zero dynamics itis clearly possible

following interpretations can be given for the various functio
appearing in the zero dynamics:

& =0l (30)
= g ) (31)
k1(61) = g—z [%ﬂ_l m ) (32)
) =~ ) (33)

whereK (g, ¢) = 1/2¢' D(q)q is the kinetic energy of the robot,
V(q) is its potential energy, ang, is the last row ofD, the
inertia matrix.

O
Proof: The form of (28) is immediate by the form of (25)

and (27) since both and~, are functions of;, and hence when
restricted toZ, are functions of; only.

Suppose now that the model (3) is expressed in coordinafes

satisfying RH6). Since the kinetic energy of the roldétyg, q),
is independent of the choice of world coordinate frame [61,
140], and since fixes this choice K (¢, ¢) is independent of
gn. SinceD := 9[(0K/0q)'] /04q [61, p. 141], it follows that
0D /oqyn = 0. Let Dy, Cy, andG y be the last rows oD, C,
and@, respectively. Thergz = v0(q)q is equal taD x (q)¢[24],
and thus is equal td K /94y sinceK = 1/24¢’ Dq. Continuing,
€5 := L becomes

_ | 8Dy q

Lyy=i'%% Dy [—Dl [Cq-l-G]} (34)
,0DY . .
=q 3 Ni—Cng—Gy. (35)
q
Noting that (see [61, p. 142])

Dy 1 D

Oy = 2Pn 1y 00 (36)

N=1 dq _Qqan

of its zero dynamics, so(t) € Z; since also by definition of
a solution,z~ := lim; ~_x(t) exists, is finite, and lies iy,
it follows thatz— € S N Z. Moreover, by definition of a solu-
tion of (13),z(t.) := =+ := A(z™), from which it follows that
€ Z.On the other hand, iA(S N Z) C Z, then from

to construct solutions to the complete model of the biped walker
along which the outpug = h(q) is identically zero. This leads
to the following definition.

Definition 1: Lety = h(q) be an output satisfying the hy-
potheses of Lemma 1, and Btandz = f,...(z) be the asso-
ciated zero dynamics manifold and zero dynamics of the swing
phase model. Suppose thah 7 is a smooth, one-dimensional,
embedded submanifold @Q. If A(SN Z) C Z, then the non-
linear system with impulse effects

Z :fzero(z)7
2t =A(z7),

2= ¢SnZ
z-eSNZ (37)
with z € Z is thehybrid zero dynamicef the model (13). <

Remark 1: From standard results in [9F N Z will be a

smooth one-dimensional embedded submanifoléiiif Z #
nd the maph’ (L¢h)’ p3]’ has constant rank equal 20V — 1
onsS N Z. A simple argument shows that this rank condition is
equivalent to rank of '  p3]" = N, and under this rank con-
Hition, SN ZNQ consists of the isolated zeros[df  py]'. Let
qy be a solution of h(q),ps(q)) = (0,0), ph(q) > 0. Then,
the connected component 81 Z containingg, is diffeomor-
phictolR pero : R — S N Z, where

ow)=| 70| @®)
0q = g , and
7= {%]((55))}1 B 39)

In view of this, the following additional assumption is made
about the outpuk and the open sed.
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HH5) There exists a unique poinf, € Q such that A. Poincaré Analysis of the Zero Dynamics

(h(qo_)-/pg(jla)) = (0,0), p3(¢7) > O and the rank 1 is shown here that the Poincaré map associated with (37) is
of [W" p3] atgy equalsh. diffeomorphic to a scalar LTI system, reducing determination of
< thelocal stability properties of its fixed point to a simple explicit
The next result characterizes when the swing phase zero gymputation.
namics are compatible with the impact model, leading to a non-Assume the hypotheses of Theorem 2. Take the Poincaré sec-
trivial hybrid zero dynamics. tion to beS N Z so that the Poincaré map is the partial map
Theorem 2: (Hybrid Zero Dynamics Existencejonsider sn7z — SnZ defined as follows [24]: lep(t, zo ) be a solution
the robot model (13) satisfying RH1)-RH6) and IH1)-IH6pf the zero dynamicg,..., and consider the time to impact func-
with a smooth functions satisfying HH1)-HHS). Then, the tjon, (15), restricted t&. Since bothf,...(z) andZ are smooth,

following statements are equivalent: a solution of (28) and (29) from a given initial conditios, is
a) A(SNnZ) c z; unigue and depends smoothly en Then, by [24, Lemma 3],
b) hoAlsnzy =0andLsho Alsnz) = 0; Z:={2€Z|0<Ti(z) <ocandLps(p(Ti(z),z)) # 0}

c) there exists at least one po(rqg, qo—) € SN Z suchthat is open. Define the Poincaré return map for the hybrid zero dy-
Y0(q0 V4o # 0,hoAy(qy) =0,andLshoA(qy, 4y ) = namics as
0.
O p(2) = @(Tr 0 A(2), A(2)). (42)
Proof: The equivalence of a) and b) isimmediate from the
definition of Z as the zero set df and ;. The equivalence of ~ In a special set of local coordinates, the return map can be
b) and c) follows from Remark 1 once it is noted from (12) thaxplicitly computed. Indeed, express the hybrid zero dynamics
L¢h o Alis linear ing. O inthe coordinates of Theorem 1, namel§, &2) = (6,7). In
Under the hypotheses of Theorem 2, the hybrid zetbese coordinate$,NZ andA : (¢7,&5) — (&1,&5) simplify
dynamics are well-defined. Let~ € S N Z, and sup- 10
pose thatlt o A(z7) < oo. Setzt = A(z7) and let

¢ : [0,t5] — Z, ty = Ti(z"), be a solution of the zero SNZ={(,&) =07,& €R} (43)
dynamics (22), such thai(0) = z* Define§(t) := 6 o ¢(t) =6t (44)
andf := df(t)/dt. €5 =6s0r0E5 (45)

Proposition 1: Assume the hypotheses of Theorem 2. Then,

over any step of the roba, : [0,2¢] — R is never zero. In par- whered, .., := v0(q")A;(qy )og(qy ), a constant that may be
ticular, § [0,¢¢] — R is strictly monotonic and thus achievessomputeda priori. The hybrid zero dynamics are thus given
its maximum and minimum values at the end points. [0 by (28) and (29) during the swing phase, and at impact with
The proof is given in the appendix. By Remark 1, it followsS N Z, the reinitialization rules (44) and (45) are applied. By
thatf(0) = Ao A,(g7 ) andd(tf) = (g7 ), that is, the extrema Proposition 1, over any stefy is nonzero and, thus, (28) and

can be computed priori. Denote these by (29) are equivalent to
0~ :=0(q; ) (40) dés _ ra(&1) ' (46)
07 =00 Ay(qp)- (41) d&1 k1(§1)é2

Without loss of generality, it is assumed titdt < 6—; thatis, From (30).£; # 0 impliesé, # 0, and, thus(s := 1/2(&,)? is
along any step of the hybrid zero dynamigss monotonically a valid change of coordinates on (46). In these coordinates, (46)

increasing becomes

Remark 2: The fact tha¥! evaluated along a step of the zero
dynamics must be monotonic implies that there are restrictions dé _ "”"2(51)_ (47)
on the walking gaits that can be achieved through computed- d&r k1(&1)
torque control based on an output that depends only on the con- )
figuration variables. o Forft <& <67, define

IV. STABILITY ANALYSIS OF THE ZERO DYNAMICS Viewo(£1) 1= — /61 K2 (£) d¢ (48)
. . o Jo+ £1(€)

Now, an explicit expression for the Poincaré map of the 1
hybrid zero dynamics will be derived, along with a precise G 125(6)2 (49)
determination of its domain of definition. Fixed points of the G =62, (5. (50)

Poincaré return map of the hybrid zero dynamics correspond to
periodic orbl_ts of the_ hybrid zero dy_namlcs. When _the_ hyb”ﬁ"hen, (47) may be integrated over a step to obtain
zero dynamics admit an exponentially stable periodic orbit,
the general feedback approach developed in [24], [45] can be -t _
. . . . CQ — CQ - ‘/zero(a ) (51)
immediately applied to create a provably, exponentially stable

periodic orbit in the full hybrid model. 1In generalV,... must be computed numerically.
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as long a5 ¢ — K > 0, where the ratio and sign of the ground reaction forces of the stance leg
end during phases of single support. This limit is reflected as an
K= gr Th0X Vzero(&1)- (52)  upper bound on the domain of definition afLet FT and Y

be the tangential and normal forces experienced at the end of

Theorem 3: (Poincaré Map for Hybrid Zero Dy-the stance leg. The upper bound will be the larggssuch that
namics): Assume the hypotheses of Theorem 2 anak some point during the associated phase of single support ei-
let (,v) be as in Theorem 1. Then, in the coordinatetherF;Y becomes negative, tF / F}¥ | exceeds the maximum
(¢1,¢2) = (0,(1/2)~?%), the Poincaré return map of the hybridallowed static Coulomb friction coefficient.

zero dynamicsp : SN Z — SN Z, is given by Calculation of Ff' and N requires the full N + 2)-DOF
_ . B model. Consider the model (4) and apply the feedhégckom
P(C3) = breroCs = Vaero(07) (53) 7). Leti. = fo(x.) + ge(z)[FT, FNT be the resulting

closed-loop system written in state space form, where;=

with domain of definition (¢.,d) andy. = he(g.) == [p"(g.), p%(q.)]' is the 2-vector

{5 >0 | 62,065 —K >0} (54) of outputs cqrresponding to the position pf the eqd of the.stance
leg. It is easily checked that the decoupling matrjx L. h. is
If 62, # 1 and invertible, and thus the forces and ;¥ may be calculated as
* Vaero(0 ) FlT =—(L, Ls h) 'L% h 60
G = - (55) [Flzw (Lg.Lyg he)™ Ly, he. (60)

¢ The above expression is quadratigjinand, when restricted to

Z, is affine in{s. Combining this with (47) results in an expres-
sion for the forces over a step of the robot that depends only on
&1 and(, . Express this as

k+1)= k 56 r _
if, and only if, 0 < 62.,, < 1, and in this case, its domain of

is in the domain of definition op, then it is the fixed point o
p. Moreover, if(; is a fixed point, ther(; is an exponentially
stable equilibrium point of

Fero FlT(gl,gz—)} =M (&)G + Mo(&) (61)

attraction is (54), the entire domain of definition of O whereA, andA; are smooth functions afi. Thus, an upper

Proof: This follows directly from the aforementioned re+,,,ng on¢; so that the pivot assumption holds is given by
sults.

Wa;l’hese stability results can be reformulated in the following max —sup [ min FN(é, C{)} >0 (62)
Y. o ¢ Lor<a<e
Corollary 1: ) FT(6,6)
a) There exists a nontrivial periodic orbit of the hybrid zero C;ff;lT/FfVI = sup [m?%e ‘# } < Jis
dynamics if, and only if§2,,, # 1 and Gy <a< 1 (61:¢2)
52 (63)
T Vaenol07) + K <0 (57) | | o
1 =670 where pu, is the static Coulomb friction coefficient of the

b) There exists an exponentially stable periodic orbit of thalking surface [30], and the domain of definition of the
hybrid zero dynamics if, and only if, (57) holds and Poincaré return map should thus be restricted to

5§ero<; -K> 07 C; < C;IﬁiT/FlN\ } . (64)

On a practical note, if the modeling hypotheses included
Bounds on the maximum actuator torque, these bounds could
also be explicitly included in the domain of definition of the
Poincaré map in the same manner.

0<62, <l (58) {CE >0

zero

Remark 3: The Lagrangian of the zero dynamics (28) an
(29) can be shown to bB,¢;, := Kyero — Vzero, WhereV,eq, is
given by (48) and

. 2 C. Creating Exponentially Stable, Periodic Orbits in the Full
Kzero = % ( ilf )> . (59) Model
fis Fixed points of the Poincaré return map of the hybrid zero

The interpretation of this result will be presented elsewhere. dynamics correspond to periodic orbits of the hybrid zero dy-
namics. By construction of the hybrid zero dynamics, these are

B. Imposing Modeling Hypotheses on the Zero Dynamics ~@lso periodic orbits of the full model, (13). Moreoverponen-
. . _ . . .. tially stable orbitsof the hybrid zero dynamics correspond to
While the domain of definition of the Poincare map is glvenxponentially stabilizable orbitsf the full model. This is de-

in (54), not all solutions of the zero dynamics satisfy the mod:
veloped next.

eling hypotheses; in particular, walking hypothesis GH2) limits Suppose that hypotheses HH1)-HHS) hold and that, in ad-
2By definition, ¢ := (1/2)(¢2)? must be positive along any solution. dition, there exists a fixed point,* € S N Z, of the Poincaré
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return map for the hybrid zero dynamics. l@tbe the periodic state walking motion. The next parts of the paper look at a
orbit in Z corresponding ta*; that is means of systematically selecting the output function.

O:={2€Z|z=09(t,A(z%)), 0<t <TroA(z")} (65 v, CoMPUTING AND PARAMETERIZING THE HYBRID ZERO

wherey is a solution of the hybrid zero dynamics, (39).is Dynamics

then a periodic orbit of the full model corresponding to initial Section IV has provided the conditions for the existence of a
condition z* and control inputu(t) = u* o ¢(t,A(z*)), for ~zero dynamics for the complete robot model with impacts, and

0 <t < TroA(z*), whereu* is given by (17). established a number of its properties. However, in a concrete
The application of the prefeedback manner, the results are not yet practicable for feedback design
because the explicit computation of the zero dynamics involves

u(z) = (LyLgh(z))™ (v — L}h(x)) (66) the inversion of a coordinate transformation. This section has

. o ) _two principal objectives. The first is to present a class of output
to (3) with an output satisfying HH1)-HH4) results in the chaifctions that leads to computable, closed-form representations
of N — 1 double integrators of the zero dynamics. The second objective is to introduce a fi-

42y nite parameterization of the outputs in a convenient form that
w2 Y (67)  will permit the shaping of the zero dynamics by parameter op-
timization.

see (16). Let(y,y) be any feedback controller on (67) satis-
fying conditions CH2)—-CH5) of [24], that is, the following. ~ A. Almost Linear Output Function Structure
. Controlle[ Hypothgses For the closed-loop chain of double Consider the following output function:
integratorsg = v(y,9)
CH2) solutions globally exist olR*¥ 2, and are unique; y = h(q) == ho(q) — ha o 8(q) (69)
CH3) solutions depend continuously on the initial condi-
tions; whereh(q) specifies(N — 1) independent quantities that are
CH4) the origin is globally asymptotically stable, and conto be controlled and, o 6(q) specifies the desired evolution of
vergence is achieved in finite time; these quantities as a function of the monotonic quartity.

CHS5) the settling time function T.e. : R?Y 2 — R by Driving y to zero will forcehg(q) to trackhg o 8(q). Intuitively,
the posture of the robot is being controlled as a holonomic con-

Tset (Yo, 90) = inf{t > 0[(y(t),y(t)) = (0,0), straint parameterized b¥(q).
(¥(0),9(0)) = (yo.%0)} Choosing
depends continuously on the initial conditigpy. o). ho(q) :=Hog (70)
Hypotheses CH2)—CH4) correspond to the definition of fi- 6(q) :=cq (71)

nite-time stability [7], [25]; CH5) is also needed, but is not im- ]
plied by CH2)-CH4) [8]. These requirements rule out tradiwhere Hy : RY — RV™'is a linear mape : RV — R
tional sliding mode control, with its well-known discontinuouss a linear functional allows the hypotheses of Lemma 1 to be

action. easily satisfied. Concerning those hypotheses, the output func-
Consider now the full-model (13) in closed loop with thdion structure (69) withho(q) andf(q) as in (70) and (71), re-
feedback spectively, satisfies HH1) (the output only depends on the con-

figuration variables) and will satisfy HH3) (invertibility) if, and
w(z) = (LyLsh(z)) " (v(h(x), Lgh(x)) — L}h(x)). (68) onlyif, H := [H},c]' is full rank. Hence, if HH2) and HH4)
hold, the swing phase zero dynamics can be computed in closed

Take the Poincaré section &she walking surface, and 1€ : ¢, indeed, the coordinate inverse required in (26) is given by
S — S be Poincaré return map. A simple computation shows

that the invariance conditiol\(S N Z) C Z, implies thatP _ g ha(&1) 79
has a well-defined restriction t8 N 7, and thatP|snz = p, 4= & ’ (72)
the Poincaré return map of the hybrid zero dynamics. By [24, ) ) o o
Th. 2], it therefore follows that is exponentially stable for N Section V-B, %, will be specialized to a vector of Bézier
the full model (13) under the feedback (68) if, and only if, it i@olyngmmls which will make it easy to achieve the invariance
exponentially stable for the hybrid zero dynamics. condition,A(SN Z) C S.

Hence, if an output can be selected so that the resulting o . )
1-DOF hybrid zero dynamics admits an exponentially stabfe SPecialization okg by Bézier Polynomials
orbit, then an exponentially stable walking motion can be A one-dimensional Bézier polynomial [6] of degréé is a
achieved under feedback control for the full dynamical modpblynomial,b; : [0, 1] — R, defined byM + 1 coefficientsq;,,
of the robot. Moreover, by the results of Section IV-B, it can bper
assured that key modeling assumptions are met for the steady

M
; M! )
3That is, the time it takes for a solution initialized(@h ., 7o) to converge to bi(s) == E aiﬁsk(l — s)M=F, (73)
the origin. The terminology is taken from [7]. E—0 k(M - k)
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Some particularly useful features of Bézier polynomials are (see S N Z, h o A(z~) = 0 means thal|¢, —g+ = Agqle,=o--

[50, p. 291]) as follows. This implies
1) The image of the Bézier polynomial is contained in the
convex hull of thel/ + 1 coefficients (as viewed as points H! [Zﬂ?} =RH ! [(;M } (78)
in ]RQ’ {(07 a6)7 (1/M7 0511)7 (2/M7 aé)v to (17 a?\[)})

(the polynomial does not exhibit large oscillations wit
small parameter variations).
2) bL(O) = 046 andbi(l) = OtM

Rvhich may be solved fdevj,, §1]'. AchievingL shoA(z~) = 0
means thag* must fall in the null space afh(q)/9q. This can
be achieved by choosing; such that

3)
) ) dh(q) S+ M A+
(Db (5)/D5)]s=0 = M (a} — o)) 9q |,_.. ¢" = |Ho~ pm—pr (mn —ao)el ¢ =0.
(79)
and Sincevo(gy )dy # 0 by assumption it follows thateg™ # 0
; ; and the solvability of (79) for; is ensured. O
(0bi(s)/0s)]|s=1 = M (O‘M - O‘M—l) : Remark 4: Theorem 4 constrains the coefficients anda;

to be functions otv;;. Hence M must be chosen to be three or

The first feature will be useful for numerical calculations (suclreater to impose configuration and velocity periodicity. <
as approximating the gradient of a cost function) where numer-

ical stability is crucial. The second two features are exactly those ;|
used to achiev&\(Sn Z) C S.

A given functiond(q) of the generalized coordinates will not, S ) ] )
in general, take values in the unit interval over a phase of singleThe use of optimization in the analysis and design of biped
support. Therefore, to appropriately compose a Bézier polyi@lking motions is not a new concept. Work as early as the
mial with 6(q), it is necessary to normalizeby 1970s can be found in the biomechanics literature (see [17]
and [28], for example). In more recent years, the design of
optimal or approximately optimal trajectories for biped robots
has become a popular topic [12], [14], [16], [26], [27], [52],
[53], [65]. In each case the approach has been to design
which takes values iff), 1]. Definehq o 6(q) as time trajectories such that a defined cost is minimized, or
approximately minimized, subject to a set of constraints.

CREATING EXPONENTIALLY STABLE FIXED POINTS
THROUGH OPTIMIZATION

_ 0(q) — 6"

s(a) = =5 (74)

21 ngqg The optimization technique employed varies. Cabodevila and

hao6(q) = 2 . q ) (75) Abba [12] parameterized the robot state as a finite Fourier
: series and compared the performance of the following three

by_105(q) algorithms: Nelder and Mead, Genetic, and Simulated An-

nealing. Chevallereau and Aoustin [14], and Chevallereau and
Group the parameters;, into an(N — 1) x (M + 1) matrix,«, Sardain [16] rewrote the actuated dynamics of the robot as
and denote the columns afby ay, := (a},,...,an ~')'. Eval- a polynomial function of the unactuated dynamics and used
uating (75) and its derivative with respecté@t the beginning sequential quadratic programming (SQP). Hasegawa, Arakawa,
(respectively, end) of a phase of single support, that is, wheted Fukuda [27] used a modified genetic algorithm to generate
(q) = 6% (respectivelyf(¢q) = 6~), leads to the following re- reference trajectories parameterized as cubic splines. Hardt
sult. [26] used an optimization package, DIRCOL [62], which
Theorem 4 (Achievind\(S N Z) C Z): Assume the hy- implements a sparse SQP algorithm and uses a variable number
potheses of Theorem 2 and an outpudf the form (69) with of cubic splines to approximate the state and piecewise linear
ho, hq, and@ as in (70), (75), and (71), respectively. Thenfunctions to approximate the control signals. Rostami and

hoA(SN Z) = 0if, and only if Bessonnet [53] applied Pontryagin’s Maximum Principle.
Roussel, Canudas-de-Wit, and Goswami [55] approximated the

[O‘ﬁ] — HRH™! |:Oé]\_/1:| _ (76) dyn_amics and used a direct shooting optimization alg_ori_thm.
0 4 While the approach presented here uses the same optimization

algorithm as in [26], the result of the optimization is not an

Moreover, ifd,exo # 0, thenLsho A(SNZ) = 0if, andonlyif o ima) o approximately optimal open-loop trajectory, but

6= — 0" . 4First note thatt™ = d,eref™ # 0 Whereé~ = ~o(qy )4y since
o1 = T Hog" +ao (77) 6,00 7 0 @ndé~ # 0 by assumption. Next, note that sincoe bo()‘fh%Lf&)
Mcq . ; . A
and (¢1,¢2) are valid coordinates orZ the coordinate transformation
) _ ) .. .. Z 0 (&,&) — (&,Ls&), 2 = (&1, Kk1(&)E2), is a full-rank map. This
whereg™ = o4(qy ) andgt := A;(gq )¢~ Thatis, if (76) and implies s, (£1) # 0 Sin(f;e
(77) hold, themA(S N Z) C Z. O .
Proof: Using Theorem 2, it suffices to show that there ex- = _ {1 ” 0 ] _
ists at least one poirflg, , 4, ) € SN Z such thaty(qy )dy # Oen&)  Lx m(&)

0,hoAy(qy)=0,andLyho A(qy, 4o ) = 0. Evaluating (72) Henceg. # 0impliesL;&, = cj # 0.
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rather aclosed-loop systemwhich creates an exponentially
stable orbit, and along this orbit energy consumption has
been approximately minimized while satisfying other natural
kinematic and dynamic constraints.

Consider (13) with (69) witthg, kg, and@ as in (70), (75),
and (71), respectively. Choosing the parameters of (70), (71),
and (75) to satisfy the assumptions of Theorem 4 guarantees that
the hybrid zero dynamics exist and the unique control associated
with the single support phase of model (13) is given by (17).
The goal of the approximate optimization will be to minimize
an appropriate cost function while simultaneously satisfying a
number of constraints.

Consider the hybrid zero dynamics (37) with cost function

1 Ti(¢; ) N-1 )
a) = — u¥ d 80
J(a) ps<qa>./o IOCICIRTCD

Fig. 3. Example&d(q) measured between the vertical and the line connecting
whereT;(¢;) is the step duratiom? (g5 ) corresponds to step the hips and the stance leg end.
length, and.*(¢) is the result of evaluating (17) along a solution
of the hybrid zero dynamics. It is interesting to note thgt, ) Note that other NICs, such as a constraint on minimum hip

may be calculated from (28) as height, are, in general, required to achieve a desired walking
style.
6~ 1 Nonlinear Boundary Equality ConstraintsThere are five
(&) = / — & (81) natural NBECs that enforce
Jo+ K1(61)6(&1, &) . .
NBEC1) the average forward walking rate defined as step
where&, (&, £5) is a solution of (46) and is monotonic §° length divided by step duration
which implies thatl’7(£5 ) is monotonic iné; . B (qr)
The total number of parameters for optimization(i§ — — P2 qo_ : (85)
1)(M —1); M — 1 free parameters for each outpLithe opti- I1(&)
mization problem may be expressed in Mayer form [4, p. 332] NBEC?2) that the postimpact velocity of the swing leg is pos-
as itive;
NBEC3) the validity of the impact of the swing leg end with
&y =ky(T1)w2 (82) the walking surface;
Fo =ko(x1) (83) NBEC4) the existence of a fixed poirt; > K/62.,.;
N-1 NBECS5) the stability of the fixed poing < 62, < 1.
T3 = Z (uf(21,22))°. (84) Explicit Boundary Constraints There are five EBCs that
i=1 give the state at = 0 andt = T7(¢&5)

EBC1) z1(0) = cA40q;
EBCZ) ) = ’YOAOU(<2>

The constraints may be divided into three classes: nonlinear (0
EBC3) J73( )
(

inequality constraints (NICs), nonlinear boundary equality con-
straints (NBECS), anq (_axpllcn bound:_:lry_constr_alnt; (EBCs). EBC4) a1 (T4 (&5 )) — coy;
The NICs must be satisfied at each point in the time interval OfEBCS) (THE)) = 7 0 0(C3)

optimization; the NBECs only need to be satisfied at the begip- H ‘EZTI 2 )] =7 (L 2/ licitly g . lcul
ning or end of the time interval of optimization; and the EBchote t atzs(T1(&; ) cannot be explicitly given as its calcula-

give the initial or final state. The following constraints are typtlon requires knowledge of; andz, over the entire time in-

ically required. terval of optimization.

Nonlinear Inequality ConstraintsThe following three NICs Note that without use c.)f the hybrid zero dynamics there
enforce modeling assumptions per constraints on would be2 N states, the derivative of the cost, aNid- 1 control

sjgnals to be included in the problem formulation, while sta-

NIC1) minimum normal ground reaction force experience, ility of the closed-loop system would be hard to quantify and

by the stance leg end; include as a simple optimization constraint. After optimization,
%ypothess HH2), the invertibility of the decoupling matrix,
must be checked. This condition is essentially guaranteed
wheneverJ(a) is finite, since singularities inL,Lsh will
normally result inu* taking on unbounded values; however, a
simply connected, open set about the periodic orbit where the

5By Theorem 4, two parameters per output can be calculated from the otﬁi@COUp"ng matrix is_ invertible can tplicitly computed by a
M —1. method developed in [45].

tion forces experienced by the stance leg end;
NIC3) swing leg end height to ensusdntersectsZ only the
end of the step.
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TABLE |
“ MODEL PARAMETERS FOREXAMPLE ROBOT
“JTorso
x Model Torso | Femurs | Tibias
? parameters (T) (£ t)
Mass, M, (kg) 20 6.8 3.2
Length, L, (m) 0.625 0.4 0.4

Inertia, I (m2kg) 2.22 1.08 0.93
Mass Center, pM (m) | 0.2 0.163 | 0.128

TABLE I
OPTIMIZATION RESULT STATISTICS
U, Uy * —
’ J(OZ) <2 6§ero 1/261‘0(9 ) K
Fig. 4. Schematic of leg with measurement conventions. (N?m) | (kgm?/s)? - (kgm?/s)? | (kgm?/s)?

36.79 | 979.0 [0.638 [ —3544 [ 260.4

For particular choice oft, HH4) must be checked to ensure
smoothness of N Z. This entails evaluating the ranbkf

M
g [ h(q) } _ Ho — 9*5;9;(5)(1111 —ap-1)c¢ |
aq pg(q) rz€SNZ 5—(1 —ar

(87)
wherep$(q) is the height of the swing end. Hypothesis HH2),
the invertibility of the decoupling matrix, is checked for choice
Uy, Uz of a by using the technique presented in [45]. If the optimization
constraints are satisfied, as detailed in Section VI, so will the
remaining gait, impact model, and output function hypotheses.

Fig. 5. Schematic of torso with measurement conventions.

VIl. EXAMPLE: FIVE-LINK BIPED WALKER _ ) ) o
C. Parameter Choice via Approximate Optimization

The goal of this section is to illustrate the application of the . ,
presented framework for stability analysis and performance en-1"ré€ additional NICs are required for the example robot

hancement. This will be done on the five-link biped robot déndel to walk with a human-like gait. The first two, when sat-

picted in Fig. 3 which satisfies hypotheses RH1)-RH5). Fétfied, prevent the stance and swing leg knees from hyperex-
this robot, GH1)-GH6) will be satisfied by restricting choicd€nding. The third, when satisfied, prevents the hips from drop-

of walking gaits appropriately during the optimization proces®ing too fow.
The optimization package DIRCOL was used to solve the

A. Robot Model optimization prqblem. The implementation was straightforward
The five-link del d h del of with the exception that DIRCOL is unable to handle noncon-
e five-link model corresponds to the model of a protog,nt jnitial EBCs. For this reason EBC1) and EBC2) must be
type five-link biped called RABBIT, which is under CONStrUC.ohverted into NBECs
'g:on bSy thngrench propcﬂ:omm_ande de Igob%tsa Ta:]tdsthe Table Il summarizes the result of optimizing for a desired av-
NRS—GdR AutpmaUql{ea]. F'QS- 4 and 5 detall the mea'erage forward walking rate of 1.05 m/s. The optimization took
surement conventions. Table | gives the model parameters. 0 se¢~21 min) on a PC-based computer with a 1-GHz Pen-
equathns of motion as well as particulars of the impact Moaim i processor. The walking motion is exponentially stable
are omitted here for reasons of space, but can be found in [Z]S'irﬁce() <82 <landy > K/62,. = 408.2. Fig. 6 is a stick
5 = 2. Fig.

zero zero

various printable formats. figure animation of this result for a single step. The walking
. . . motion appears to be natural. Fig. 7 is a plot of the associated
B. Almost Linear Output Function Choice torques at the fixed point. Of the four associated torques, the
ChoosingH, = [I, 0] andc = (—1, 0,—1/2, 0,—1) clearly peak torque occurs at the stance leg hip and is approximately
guarantees tha is invertible and results in the output 47 Nm. Note that this is comparable to the torques associated
with walking at 0.75 m/s as determined in [14]. The peak power
431 is also associated with the stance leg hip and is approximately
— _ _ | 932 _
y=ho(q) —haob(q) = o hao0(q). (88)  6gee Remark 1.
qa2 "This is accomplished for EBC1 by the construction
In light of Remark 4,M is chosen to be six, which leaves five NBECspc; = {0’ , 71(0) —cAgog =0
’ |z1(0) — cA,o,|, otherwise

free parameters to be chosen for each output. This implies a total
of 20 output function parameters to be optimized. and, similarly, for EBC2).
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Fig. 6. Stick animation of robot taking one step from left to righ. Note that the

stance leg is dotted.
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Fig. 7. Torque curves for three steps for the example.
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Fig. 8. Constituent functions of the zero dynamics for the example.

267 W. Fig. 8 givess; andk, as functions of;. Notice that
k1 is strictly positive whilex, is sign indefinite. Movies of the
walking motion may be found in [2].

VIIl. CONCLUSION

o(t)
A

> 6(t)
: t}\jz
6(to = 0) o(ty)

Fig. 9. Impossible integral curve of the zero dynamics.

walking motions. In particular, exponentially stable orbits of
the hybrid zero dynamics can be rendered exponentially stable
in the complete hybrid model. Since the Poincaré map of the
hybrid zero dynamics is diffeomorphic to a scalar, LTI system,
the existence and stability properties of orbits of the hybrid zero
dynamics are particularly easy to characterize. It was shown
how a special class of output functions can be used to simplify
the actual computation of the hybrid zero dynamics, while at
the same time inducing a convenient, finite parameterization
of the hybrid zero dynamics. Parameter optimization was
then applied to the hybrid zero dynamics to directly design
a provably stable, closed-loop system with satisfied design
constraints, such as walking at a given average speed and the
forces on the support leg lying in the allowed friction cone. All
of the results were illustrated on a five-link walker.

The key property permitting the aforementioned analysis is
the invariance of the swing-phase zero dynamics under the im-
pact map, thereby creating a two-dimensional invariant surface
in the full hybrid model. Without this property, a “stability”
analysis of the swing-phase zero dynamics makes no sense. In
[39], invariance of the swing-phase zero dynamics was achieved
only at a point, thereby creating a one-dimensional invariant sur-
face (i.e., a periodic orbit) in the full-order model. In [24], an
even weaker form of invariance was achieved: the swing-phase
zero dynamics became invariant under the impact map only in
the limit under high-gain feedback control. In work to be pub-
lished, it will be shown that the framework of the hybrid zero
dynamics also allows the design of transition controllers for
switching with stability among controllers that achieve stable
walking at discrete speeds, and for achieving walking at a con-
tinuum of speeds [63].

APPENDIX

Proof of Proposition 1

Proof: Without loss of generality, assumiéty) < O(ty).
Thend(t,) > 0. To show thad(t) is monotonic it suffices to
show thatd(t) > 0 for all ty < ¢ < ty. Suppose there exists
somet, (see Fig. 9) such thaf < ¢ < tf andé(tz) = 0.

The notion of the hybrid zero dynamics has been introduckgt 2 be the smallest such The point(d(t,), 0) cannot be an
for a one degree of underactuation, planar, bipedal walker wRgUilibrium point of (22) becaus#{t,) < d(t;). Hence, there
rigid impacts. This two-dimensional, invariant subdynamics @ixits some; > ¢, such that for alk, < t < t3, 9( ) < 0and

the complete hybrid model of the biped robot was shown

8dt) < f(t2). By the assumption thd(t) > 6(to) forall ¢t > t,

be key to designing exponentially stabilizing controllers foand becausé(t;) > 6(t2), there must exist & > ¢3 such
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thaté(t4) = é(tl) for somety < t; < to. This contradicts the [23] J. W. Grizzle, G. Abba, and F. Plestan, “Proving asymptotic stability
uniqueness of solutions of (22). Hence, there can b soch

thatf(t,) = 0 and thug(¢) > 0 forall ty < ¢ < t;. Therefore,

0: [to, t;] — R is strictly monotonic.
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