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Hybrid Zero Dynamics of Planar Biped Walkers

Abstract
Planar, underactuated, biped walkers form an important domain of applications for hybrid dynamical systems.
This paper presents the design of exponentially stable walking controllers for general planar bipedal systems
that have one degree-of-freedom greater than the number of available actuators. The within-step control
action creates an attracting invariant set—a two-dimensional zero dynamics submanifold of the full hybrid
model—whose restriction dynamics admits a scalar linear time-invariant return map. Exponentially stable
periodic orbits of the zero dynamics correspond to exponentially stabilizable orbits of the full model. A
convenient parameterization of the hybrid zero dynamics is imposed through the choice of a class of output
functions. Parameter optimization is used to tune the hybrid zero dynamics in order to achieve closed-loop,
exponentially stable walking with low energy consumption, while meeting natural kinematic and dynamic
constraints. The general theory developed in the paper is illustrated on a five link walker, consisting of a torso
and two legs with knees.
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Hybrid Zero Dynamics of Planar Biped Walkers
E. R. Westervelt, Student Member, IEEE, J. W. Grizzle, Fellow, IEEE, and D. E. Koditschek, Senior Member, IEEE

Abstract—Planar, underactuated, biped walkers form an
important domain of applications for hybrid dynamical systems.
This paper presents the design of exponentially stable walking
controllers for general planar bipedal systems that have one
degree-of-freedom greater than the number of available actuators.
The within-step control action creates an attracting invariant
set—a two-dimensional zero dynamics submanifold of the full
hybrid model—whose restriction dynamics admits a scalar linear
time-invariant return map. Exponentially stable periodic orbits of
the zero dynamics correspond to exponentially stabilizable orbits
of the full model. A convenient parameterization of the hybrid
zero dynamics is imposed through the choice of a class of output
functions. Parameter optimization is used to tune the hybrid zero
dynamics in order to achieve closed-loop, exponentially stable
walking with low energy consumption, while meeting natural
kinematic and dynamic constraints. The general theory developed
in the paper is illustrated on a five link walker, consisting of a
torso and two legs with knees.

Index Terms—Bipeds, hybrid systems, Poincaré sections, under-
actuated system, zero dynamics.

I. INTRODUCTION

A PLANAR biped walker is a robot that locomotes via al-
ternation of two legs in the sagittal plane (see Fig. 1). The

models for such robots are necessarily hybrid, consisting of or-
dinary differential equations to describe the motion of the robot
when only one leg is in contact with the ground (single support
or swing phase of the walking motion), and a discrete map to
model the impact when the second leg touches the ground [30]
(double support phase). The complexity of controlling such a
system is a function of the number of degrees of freedom of the
model as well as the degree of actuation or, more precisely,un-
deractuationof the system.

For planar, biped walkers with a torso andone degree of
underactuation, it was shown for the first time in [24] for a
three-link model, and in [45] for a 5-link model, that these sys-
tems admit control designs with provable stability properties.
The control designs involved the judicious choice of a set of
holonomic constraints that were asymptotically imposed on the
robot via feedback control. This was accomplished by inter-
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Fig. 1. Higher DOF robot model. Cartesian coordinates are indicated at the
hips and the leg ends.

preting the constraints as output functions, and then combining
ideas from computed torque and finite-time stabilization. The
latter property was used to reduce the stability analysis of the
resulting walking motions to the computation and analysis of a
one dimensional Poincaré map. In these control designs, it was
observed that various parameters appearing in the holonomic
constraints would affect the walking speed, the torques required
to achieve walking, etc., but no systematic method for adjusting
the parameters was presented.

This paper introduces an important improvement on the pre-
vious design methodology by affording a common framework
for stability analysis and performance enhancement. The frame-
work provides systematic design of feedback controllers that
achieve exponentially stable walking motions in-link, one
degree of underactuation, planar biped models, while affording
adjustment of additional figures of merit, for example, energy
consumption, as well. Specifically, a within-step controller is
devised whose closed loop incorporates a two-dimensional sub-
manifold—the zero set of an appropriately parameterized output
map—that is an attracting invariant set with respect to the full
hybrid model. The selection of this zero dynamics through the
choice of output map parameters affords the choice of practi-
cable kinematic, torque, and power ranges, all while respecting
the guarantee of an exponentially stable walking gait.

In the broader spectrum of dynamically dexterous machines,
this work builds on the ideas of Koditscheket al. [11], [37],
[41], [49] where the goal is not to prescribe the dynamics of
systems via reference trajectories, as is often done in the con-
trol of legged locomotion (see [15], [29], [34], [35], and [48], for
example) but rather to encode the dynamic task via a lower di-
mensional target, itself represented by a set of differential equa-
tions. Given the demonstrated appearance of internal dynamical
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models in the animal nervous system [36], and the emerging ev-
idence that these models incorporate a state-event based (as op-
posed to explicit time-based) representations of the plant [18],
it seems plausible to hypothesize that task encoding via internal
target dynamics may also play a significant role in animal motor
control [21]. Previous work on legged locomotion has touched
on this concept without clearly articulating or exploiting its full
potential. Sano and Furusho [56] regulated angular momentum
as a means of inducing locomotion; Goswamiet al. [22] regu-
lated total energy; and Kajita and Tani [34] approximated the
robot as an inverted pendulum, regulating its center of mass.
Onoet al.[43] slave the control to one of the states of the system,
instead of time (see also [44] where this idea is applied to the ac-
robot). Prattet al. [46], [47] achieved a reduction in complexity
through a proposed set of walking principles, such as main-
taining the torso at a constant angle and the hips at a constant
height above the ground while moving one foot in front of the
other. Although in that work, the “target” is first order (gradient)
dynamics, the leg transitions are imposed by event driven logic,
and it is unclear over what range of initial conditions and per-
turbations the physical second order hybrid closed-loop system
may ultimately succeed in maintaining a stable gait. In all such
approaches, mechanisms comparable to those developed here
impose kinematic or dynamic constraints, enforcing, over the
Lagrangian (i.e., away from impact conditions) portion of the
state space, low dimensional attracting submanifolds. Here, in
contrast, as in [11], [41], and [49], the attracting submanifold
is also designed to be an invariant set of the Lagrangian por-
tion of the closed-loop system whose restriction dynamics (the
zero dynamics in this paper) emerges from the robot’s motion
itself. However, unlike any previous work, in this paper, the full
hybrid zero dynamics (i.e., the entire reduced order motion of
the mechanism including both the Lagrangian and the impact
portions) is rendered invariant. In this sense, our present results
combine the analytical machinery developed in [24] and [45]
with the notion of a dynamically targeted postural prescription
[41], [57] to provide the first rigorous methodology for a lower
dimensional hybrid target dynamics. Note that [60] can be in-
terpreted as providing a similar result for fully actuated systems
and a target dynamics having the same dimension as the system
being controlled.

The notion of hybrid zero dynamics is an extension of the
notion of zero dynamics for systems described by ordinary dif-
ferential equations. While the zero dynamics for a system mod-
eled by ordinary differential equations is a well-known [31] and
increasingly used concept, [5], [33], [51], [59], the hybrid zero
dynamics is a novel notion developed in this paper to deal with
the impact map that is common in legged locomotion models.
The hybrid zero dynamics may be defined analogously to the
zero dynamics: the largest internal dynamics compatible with
the output being identically zero. The central concern of the
paper is to establish a constructive approach to the definition of
hybrid zero dynamics resulting in useful controllers for robotic
walking. The zero dynamics of the swing phase portion of the
model have been previously studied in [39] in the context of tra-
jectory planning and tracking for an underactuated biped.

The paper is structured as follows. Section II delineates the
class of robot models treated here, in particular, subsuming

those introduced in [24] and [45]. Section III first develops
the zero dynamics of the swing phase of the model [24], [39]
using general results in [31]. This establishes a foundation for
defining the zero dynamics of a hybrid dynamical system along
with a general statement of existence conditions.

In Section IV it is demonstrated that the Poincaré map as-
sociated with the hybrid zero dynamics is diffeomorphic to a
scalar, linear time-invariant (LTI) system. This renders the sta-
bility properties of the zero dynamics transparent. A means for
computing the exact upper and lower bounds of the domain
of definition of the Poincaré map is also given. The section is
closed with a summary of the feedback methodology of [24]
which is shown to take exponentially stable orbits of the hybrid
zero dynamics to exponentially stable orbits of the full model.

Section V addresses issues associated with computing the hy-
brid zero dynamics in closed form so that they may be effec-
tively exploited for design via parameter optimization. This is
accomplished by specializing to a class of outputs defined by a
linear function of the state plus a nonlinear function of a scalar
variable. The nonlinear function is further specialized to Bézier
polynomials [6], which provide a very convenient parameteri-
zation for imposing a variety of constraints associated with the
existence of the hybrid zero dynamics and the periodicity of de-
sired walking motions, among others.

In Section VI, a framework for the creation of exponentially
stable fixed points through optimization is given. Optimization
allows the shaping of the hybrid zero dynamics while satisfying
natural kinematic and dynamic constraints. The result of the
optimization process is not an optimal trajectory but rather a
provably stable, closed-loop system with satisfied design con-
straints.

Section VII illustrates the presented framework for stability
analysis and performance enhancement on a 5-link biped model
which is under construction by the French projectCommande de
Robots à Pattesof theCNRS—GdR Automatique[1].

II. ROBOT MODEL AND MODELING ASSUMPTIONS

This section introduces the class of biped walking models, the
central concern of the paper. The model considered is a planar
open kinematic chain connected at a single joint called the “hip,”
comprising two identical open chains called the “legs,” and a
third called the “torso.” As depicted in Fig. 1, intentionally sug-
gestive of a human figure, conditions that guarantee the torso
remains free in the air, while the legs alternate in ground con-
tact will be imposed. All motions will be assumed to take place
in the sagittal plane and consist of successive phases ofsingle
support(meaning the stance leg is touching the walking surface
and the swing leg is not) anddouble support(the swing leg and
the stance leg are both in contact with the walking surface).

The two phases of the walking cycle naturally lead to a math-
ematical model of the biped consisting of two parts: the differ-
ential equations describing the dynamics during the single sup-
port phase, and a model of the dynamics of the double support
phase. In order to avoid the “stiffness” associated with including
a second differential equation to model the rapid evolution of
the robot’s state at the impact time [10], [38], [54], it will be as-
sumed that the transition from one leg to another takes place in
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an infinitesimal length of time [20], [58]; this assumption entails
the use of a rigid contact model to describe the impulsive nature
of the impact of the swing leg with the ground. The rigid con-
tact model effectively collapses the double support phase to an
instant in time, and allows a discontinuity in the velocity compo-
nent of the state, with the configuration remaining continuous.
The biped model is, thus,hybrid in nature, consisting of a con-
tinuous dynamics and a reinitialization rule at the contact event.

An important source of complexity in a biped system is the
degree of actuation of the system, or more precisely, the degree
of underactuationof the system. It will be assumed that there
is no actuation at the end of the stance leg. Thus the system is
underactuated during walking, as opposed to fully actuated (a
control at each joint and the contact point with the ground).

A complete list of hypotheses assumed for the robot model
and the desired walking gaits is now enumerated.

Robot Hypotheses:The robot is assumed to be:

RH1) comprised of rigid links with mass, connected by
revolute joints with no closed kinematic chains;

RH2) planar, with motion constrained to the sagittal plane;
RH3) bipedal, with identical legs connected at a common

point called the hips;
RH4) actuated at each joint;
RH5) unactuated at the point of contact between the stance

leg and ground.

Gait Hypotheses:Conditions on the controller will be im-
posed and shown to insure that the robot’s consequent motion
satisfies the following properties consistent with the intuitive
notion of a simple walking gait.

GH1) There are alternating phases of single support and
double support.

GH2) During the single support phase, the stance leg acts as
a pivot joint, that is, throughout the contact, it can be
guaranteed that the vertical component of the ground
reaction force is positive and that the ratio of the hor-
izontal component to the vertical component does not
exceed the coefficient of static friction.

GH3) The double support phase is instantaneous and can be
modeled as a rigid contact [30].

GH4) At impact, the swing leg neither slips nor rebounds.
GH5) In steady state, successive phases of single support are

symmetric with respect to the two legs.
GH6) Walking is from left to right, so that the swing leg starts

from behind the stance leg and is placed strictly in front
of the stance leg at impact.

RH1) and RH2) imply the robot has -degrees-of-
freedom (DOFs) ( joint angles plus the Cartesian coordinates
of the hips, for example). RH4), RH5), and GH2) imply that
when walking the robot has one degree of underactuation, i.e.,
one less control than DOF. It is worth noting that even if there
were actuation between the stance leg end and ground, it would
be worthwhile to first design a controller under hypothesis RH5)
and then add an outer control loop to exploit the torque available
at the ankle in order to improve the convergence rate of walking
to a desired average forward walking rate or to enlarge the re-
gion of attraction of the inner controller.

A. Swing Phase Model

Under GH2) the dynamic model of the robot during the swing
phase has -DOF. Let be a set of angular
coordinates describing the configuration of the robot with world
reference frame . Since only symmetric gaits are of interest
here, the same model can be used irrespective of which leg is
the stance leg if the coordinates are relabeled after each phase
of double support. Using the method of Lagrange, the model is
written in the form

(1)

In accordance with RH4) and RH5), torques, to
are applied between each connection of two links,but not

between the stance leg and ground. The model is written in state-
space form by defining

(2)

(3)

where . The state space of the model is taken as
, where is a simply

connected, open subset of corresponding to physically
reasonable configurations of the robot (for example, with the
exception of the end of the stance leg, all points of the robot
being above the walking surface; one could also impose that
the knees are not bent backward, etc.). An alternate approach,
not used here, would be to define the admissible states through
viability constraints [3], [10].

B. Impact Model

An impact occurs when the swing leg touches the walking
surface, also called the ground. The impact between the swing
leg and the ground is modeled as a contact between two rigid
bodies. In addition to modeling the change in state of the robot,
the impact model accounts for the relabeling of the robot’s coor-
dinates that occurs after each phase of double support. The de-
velopment of the impact model requires the full -DOF
of the robot. By adding Cartesian coordinates to the
hips (see Fig. 1), the following extended model is easily ob-
tained through the method of Lagrange:

(4)

with and where repre-
sents the vector of external forces acting on the robot at the con-
tact point. If the stance leg end is in contact with the ground and
not slipping, the extended coordinatesand their velocities
are related to and by

and (5)

where , and and are
the horizontal and vertical positions of the hip, respectively.

Impact Model Hypotheses:The impact model of [30] is used
under the following assumptions.

IH1) The contact of the swing leg with the ground results in
no rebound and no slipping of the swing leg.
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IH2) At the moment of impact, the stance leg lifts from the
ground without interaction.

IH3) The impact is instantaneous.
IH4) The external forces during the impact can be repre-

sented by impulses.
IH5) The impulsive forces may result in an instantaneous

change in the velocities, but there is no instantaneous
change in the configuration.

IH6) The actuators cannot generate impulses and, hence, can
be ignored during impact.

IH1)–IH6) imply total angular momentum is conserved [30].
Following an identical development as in [24], the expression
relating the velocity of the robot just before impact,, to the
velocity just after (without relabeling), , may be written as

(6)

where

(7)

are the Cartesian coordinates of the
end of the swing leg (see Fig. 1), and and are the inte-
grals of the tangential and normal contact impulsive forces. The
existence of the matrix inverse indicated in (6) and (7) is easily
verified. Solving (6) yields

(8)

The map from to , that is, the map from velocities just
prior to impact to just after impact (without relabeling), is ob-
tained by partitioning as

(9)

(10)

Combining (5) with (9) and (10) results in an expression for the
velocities of the robot just after impact and the integral of the
forces experienced by the end of the swing leg at impact. At im-
pact, it is assumed that the swing leg becomes the new stance
leg, so the coordinates must be relabeled. Express the relabeling
of the states as a linear, invertible transformation matrix,. The
result of the impact and relabeling of the states is then an expres-
sion

(11)

where (respectively, ) is state
value just after (respectively, just before) impact and

(12)

where and
.

C. Plant Model: A Hybrid Nonlinear Underactuated Control
System

The overall biped robot model can be expressed as a nonlinear
system with impulse effects [64]

(13)

where

(14)

and . The value of is taken to be
positive so that for the swing leg end is in front of the
stance leg as per GH6). Solutions are taken to be right contin-
uous and must have finite left and right limits at each impact
event (see [23] for details).

Informally, astepof the robot is a solution of (13) that starts
with the robot in double support, ends in double support with
the configurations of the legs swapped, and contains only one
impact event. This is more precisely defined as follows. Let

be a maximal solution of the swing phase dynamics
(3) with initial condition at time , and define thetime
to impactfunction, , by

if s.t.

otherwise.
(15)

Let be such that . A stepof the robot
is the solution of (13) defined on the half-open interval

with initial point . Any point such that
is said to result in the robot taking a step.

III. Z ERO DYNAMICS OF WALKING

The method of computed torque or inverse dynamics is ubiq-
uitous in the field of robotics [19], [40], [61]. It consists of
defining a set of outputs, equal in number to the inputs, and
then designing a feedback controller that asymptotically drives
the outputs to zero. The task that the robot is to achieve is en-
coded into the set of outputs in a such a way that the nulling
of the outputs is (asymptotically) equivalent to achieving the
task, whether the task be asymptotic convergence to an equilib-
rium point, a surface, or a time trajectory. For a system mod-
eled by ordinary differential equations (in particular, no impact
dynamics), themaximal internal dynamicsof the system that
arecompatible with the output being identically zerois called
thezero dynamics[31], [32], [42]. Hence, the method of com-
puted torque, which is asymptotically driving a set of outputs to
zero, is indirectly designing a set of zero dynamics for the robot.
Since, in general, the dimension of the zero dynamics is consid-
erably less than the dimension of the model itself, the task to be
achieved by the robot has beenimplicitly encoded into a lower
dimensional system.

One of the main points of this paper is that this process can
be explicitly exploited in the design of feedback controllers
for walking mechanisms,even in the presence of impacts.
Section III-A will introduce a class of outputs for which the
swing phase zero dynamics can be readily identified and
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analyzed. Section III-B will derive natural conditions under
which the swing phase zero dynamics become compatible with
the impact model, thereby leading to the notion of a hybrid zero
dynamics for the complete model of the biped.

A. Swing-Phase Zero Dynamics

This section identifies the swing-phase zero dynamics for
a particular class of outputs that have proven useful in con-
structing feedback controllers for bipedal walkers [24], [45].
Since no impact dynamics are involved, the work here is simply
a specialization of the general results in [31] to the model (3).
The results summarized here will form the basis for defining a
zero dynamics of the complete hybrid model of the planar biped
walker, which is the desired object for study.

Note that if an output depends only on the configu-
ration variables, then, due to the second order nature of the robot
model, the derivative of the output along solutions of (3) does
not depend directly on the inputs. Hence, its relative degree is
at least two. Differentiating the output once again computes the
accelerations, resulting in

(16)

The matrix is called the decoupling matrix and de-
pends only on the configuration variables. A consequence of the
general results in [31] is that the invertibility of this matrix at
a given point assures the existence and uniqueness of the zero
dynamics in a neighborhood of that point. With a few extra hy-
potheses, these properties can be assured on a given open set.

Lemma 1: (Swing-Phase Zero Dynamics):Suppose that a
smooth function is selected so that

HH1) is a function of only the configuration coordinates;
HH2) there exists an open set such that for each point

, the decoupling matrix is square and
invertible (i.e., the dimension ofequals the dimension
of , and has vector relative degree );

HH3) there exists a smooth real valued function such
that is a diffeomorphism onto
its image (see Fig. 2 for an example );

HH4) there exists at least one point inwhere vanishes.
Then

1) is a smooth
two-dimensional submanifold of ;

2) the feedback control

(17)

renders invariant under the swing dynamics; that is, for
every , .

is called thezero dynamics manifoldand is
called thezero dynamics.

Lemma 1 follows immediately from general results in [31];
a few of the details are outlined here for later use. From hy-
potheses HH1) and HH3), is a valid coordi-
nate transformation on and, thus

(18)

Fig. 2. Schematic of the five-link robot considered with measurement
conventions.

is a coordinate transformation on . In these coordinates, the
system takes the form

(19)

where is evaluated at

(20)

(21)

Enforcing results in , as
in (17), and the zero dynamics becoming

(22)

While it is useful to know that the zero dynamics can be ex-
pressed as a second order system, this form of the equations is
very difficult to compute directly due to the need to invert the
decoupling matrix. However, this can be avoided. Indeed, since
the columns of in (3) are involutive, by [31, p. 222], in a neigh-
borhood of any point where the decoupling matrix is invertible,
there exists a smooth scalar functionsuch that

(23)

is a valid coordinate transformation and

(24)

Moreover, by applying the constructive proof of the Frobenius
theorem of [31, p. 23] in a set of coordinates for the robot such
that

RH6) the model is expressed in relativeangular coor-
dinates, , plus oneabsoluteangular co-
ordinate,
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one obtains that can be explicitly computed to be the last entry
of , and hence it can be assumed that has the form

; it follows that (23) is a valid coordinate change on all
of .

In the coordinates (23), the zero dynamics become

(25)

where there right-hand side is evaluated at

(26)

(27)

Theorem 1: (Swing-Phase Zero Dynamics Form):Under the
hypotheses of Lemma 1, is a valid set
of coordinates on , and in these coordinates the zero dynamics
take the form

(28)

(29)

Moreover, if (3) is expressed in coordinates satisfying RH6), the
following interpretations can be given for the various functions
appearing in the zero dynamics:

(30)

(31)

(32)

(33)

where is the kinetic energy of the robot,
is its potential energy, and is the last row of , the

inertia matrix.
Proof: The form of (28) is immediate by the form of (25)

and (27) since both and are functions of , and hence when
restricted to , are functions of only.

Suppose now that the model (3) is expressed in coordinates
satisfying RH6). Since the kinetic energy of the robot, ,
is independent of the choice of world coordinate frame [61, p.
140], and since fixes this choice, is independent of

. Since [61, p. 141], it follows that
Let , , and be the last rows of , ,

and , respectively. Then, is equal to [24],
and thus is equal to since . Continuing,

becomes

(34)

(35)

Noting that (see [61, p. 142])

(36)

Equation (35) becomes which,
when evaluated on , is a function of only.

B. Hybrid Zero Dynamics

The goal of this subsection is to incorporate the impact model
into the notion of themaximal internal dynamics compatible
with the output being identically zero, in order to obtain a zero
dynamics of the complete model of the biped walker, (13). To-
ward this goal, let be an output satisfying the hy-
potheses of Lemma 1 and suppose there exists a trajectory,,
of the hybrid model (13) along which the output is identically
zero. If the trajectory contains no impacts with, then is a
solution of the swing phase dynamics and also of its zero dy-
namics. If the trajectory does contain impact events, then let

be an open interval of time containing exactly one im-
pact at . By definition, on the intervals and ,

is a solution of the swing phase dynamics and hence also
of its zero dynamics, so ; since also by definition of
a solution, exists, is finite, and lies in ,
it follows that . Moreover, by definition of a solu-
tion of (13), , from which it follows that

. On the other hand, if , then from
solutions of the swing phase zero dynamics it is clearly possible
to construct solutions to the complete model of the biped walker
along which the output is identically zero. This leads
to the following definition.

Definition 1: Let be an output satisfying the hy-
potheses of Lemma 1, and letand be the asso-
ciated zero dynamics manifold and zero dynamics of the swing
phase model. Suppose that is a smooth, one-dimensional,
embedded submanifold of . If , then the non-
linear system with impulse effects

(37)

with is thehybrid zero dynamicsof the model (13).
Remark 1: From standard results in [9], will be a

smooth one-dimensional embedded submanifold if
and the map has constant rank equal to
on . A simple argument shows that this rank condition is
equivalent to rank of , and under this rank con-
dition, consists of the isolated zeros of . Let

be a solution of . Then,
the connected component of containing is diffeomor-
phic to per , where

(38)

, and

(39)

In view of this, the following additional assumption is made
about the output and the open set .
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HH5) There exists a unique point such that
and the rank

of at equals .

The next result characterizes when the swing phase zero dy-
namics are compatible with the impact model, leading to a non-
trivial hybrid zero dynamics.

Theorem 2: (Hybrid Zero Dynamics Existence):Consider
the robot model (13) satisfying RH1)–RH6) and IH1)–IH6)
with a smooth function satisfying HH1)–HH5). Then, the
following statements are equivalent:

a) ;
b) and ;
c) there exists at least one point such that

, , and
.

Proof: The equivalence of a) and b) is immediate from the
definition of as the zero set of and . The equivalence of
b) and c) follows from Remark 1 once it is noted from (12) that

is linear in .
Under the hypotheses of Theorem 2, the hybrid zero

dynamics are well-defined. Let , and sup-
pose that . Set and let

be a solution of the zero
dynamics (22), such that Define

and .
Proposition 1: Assume the hypotheses of Theorem 2. Then,

over any step of the robot, is never zero. In par-
ticular, is strictly monotonic and thus achieves
its maximum and minimum values at the end points.

The proof is given in the appendix. By Remark 1, it follows
that and that is, the extrema
can be computeda priori. Denote these by

(40)

(41)

Without loss of generality, it is assumed that that is,
along any step of the hybrid zero dynamics,is monotonically
increasing.

Remark 2: The fact that evaluated along a step of the zero
dynamics must be monotonic implies that there are restrictions
on the walking gaits that can be achieved through computed-
torque control based on an output that depends only on the con-
figuration variables.

IV. STABILITY ANALYSIS OF THEZERODYNAMICS

Now, an explicit expression for the Poincaré map of the
hybrid zero dynamics will be derived, along with a precise
determination of its domain of definition. Fixed points of the
Poincaré return map of the hybrid zero dynamics correspond to
periodic orbits of the hybrid zero dynamics. When the hybrid
zero dynamics admit an exponentially stable periodic orbit,
the general feedback approach developed in [24], [45] can be
immediately applied to create a provably, exponentially stable
periodic orbit in the full hybrid model.

A. Poincaré Analysis of the Zero Dynamics

It is shown here that the Poincaré map associated with (37) is
diffeomorphic to a scalar LTI system, reducing determination of
the local stability properties of its fixed point to a simple explicit
computation.

Assume the hypotheses of Theorem 2. Take the Poincaré sec-
tion to be so that the Poincaré map is the partial map

defined as follows [24]: let be a solution
of the zero dynamics and consider the time to impact func-
tion, (15), restricted to . Since both and are smooth,
a solution of (28) and (29) from a given initial condition,, is
unique and depends smoothly on. Then, by [24, Lemma 3],

and
is open. Define the Poincaré return map for the hybrid zero dy-
namics as

(42)

In a special set of local coordinates, the return map can be
explicitly computed. Indeed, express the hybrid zero dynamics
in the coordinates of Theorem 1, namely, . In
these coordinates, and simplify
to

(43)

(44)

(45)

where , a constant that may be
computeda priori. The hybrid zero dynamics are thus given
by (28) and (29) during the swing phase, and at impact with

, the reinitialization rules (44) and (45) are applied. By
Proposition 1, over any step is nonzero and, thus, (28) and
(29) are equivalent to

(46)

From (30), implies and, thus, is
a valid change of coordinates on (46). In these coordinates, (46)
becomes

(47)

For , define1

(48)

(49)

(50)

Then, (47) may be integrated over a step to obtain

(51)

1In general,V must be computed numerically.
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as long as2 , where

(52)

Theorem 3: (Poincaré Map for Hybrid Zero Dy-
namics): Assume the hypotheses of Theorem 2 and
let be as in Theorem 1. Then, in the coordinates

, the Poincaré return map of the hybrid
zero dynamics, , is given by

(53)

with domain of definition

(54)

If and

(55)

is in the domain of definition of , then it is the fixed point of
. Moreover, if is a fixed point, then is an exponentially

stable equilibrium point of

(56)

if, and only if, , and in this case, its domain of
attraction is (54), the entire domain of definition of.

Proof: This follows directly from the aforementioned re-
sults.

These stability results can be reformulated in the following
way.

Corollary 1:

a) There exists a nontrivial periodic orbit of the hybrid zero
dynamics if, and only if, and

(57)

b) There exists an exponentially stable periodic orbit of the
hybrid zero dynamics if, and only if, (57) holds and

(58)

Remark 3: The Lagrangian of the zero dynamics (28) and
(29) can be shown to be , where is
given by (48) and

(59)

The interpretation of this result will be presented elsewhere.

B. Imposing Modeling Hypotheses on the Zero Dynamics

While the domain of definition of the Poincaré map is given
in (54), not all solutions of the zero dynamics satisfy the mod-
eling hypotheses; in particular, walking hypothesis GH2) limits

2By definition,� := (1=2)(� ) must be positive along any solution.

the ratio and sign of the ground reaction forces of the stance leg
end during phases of single support. This limit is reflected as an
upper bound on the domain of definition of. Let and
be the tangential and normal forces experienced at the end of
the stance leg. The upper bound will be the largestsuch that
at some point during the associated phase of single support ei-
ther becomes negative, or exceeds the maximum
allowed static Coulomb friction coefficient.

Calculation of and requires the full -DOF
model. Consider the model (4) and apply the feedbackfrom
(17). Let be the resulting
closed-loop system written in state space form, where,

and is the 2-vector
of outputs corresponding to the position of the end of the stance
leg. It is easily checked that the decoupling matrix is
invertible, and thus the forces and may be calculated as

(60)

The above expression is quadratic in, and, when restricted to
, is affine in . Combining this with (47) results in an expres-

sion for the forces over a step of the robot that depends only on
and . Express this as

(61)

where and are smooth functions of . Thus, an upper
bound on so that the pivot assumption holds is given by

(62)

(63)

where is the static Coulomb friction coefficient of the
walking surface [30], and the domain of definition of the
Poincaré return map should thus be restricted to

(64)

On a practical note, if the modeling hypotheses included
bounds on the maximum actuator torque, these bounds could
also be explicitly included in the domain of definition of the
Poincaré map in the same manner.

C. Creating Exponentially Stable, Periodic Orbits in the Full
Model

Fixed points of the Poincaré return map of the hybrid zero
dynamics correspond to periodic orbits of the hybrid zero dy-
namics. By construction of the hybrid zero dynamics, these are
also periodic orbits of the full model, (13). Moreover,exponen-
tially stable orbitsof the hybrid zero dynamics correspond to
exponentially stabilizable orbitsof the full model. This is de-
veloped next.

Suppose that hypotheses HH1)–HH5) hold and that, in ad-
dition, there exists a fixed point, of the Poincaré
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return map for the hybrid zero dynamics. Letbe the periodic
orbit in corresponding to ; that is

(65)

where is a solution of the hybrid zero dynamics, (37).is
then a periodic orbit of the full model corresponding to initial
condition and control input , for

where is given by (17).
The application of the prefeedback

(66)

to (3) with an output satisfying HH1)–HH4) results in the chain
of double integrators

(67)

see (16). Let be any feedback controller on (67) satis-
fying conditions CH2)–CH5) of [24], that is, the following.

Controller Hypotheses :For the closed-loop chain of double
integrators,

CH2) solutions globally exist on , and are unique;
CH3) solutions depend continuously on the initial condi-

tions;
CH4) the origin is globally asymptotically stable, and con-

vergence is achieved in finite time;
CH5) the settling time function3 , by

depends continuously on the initial condition, .
Hypotheses CH2)–CH4) correspond to the definition of fi-

nite-time stability [7], [25]; CH5) is also needed, but is not im-
plied by CH2)–CH4) [8]. These requirements rule out tradi-
tional sliding mode control, with its well-known discontinuous
action.

Consider now the full-model (13) in closed loop with the
feedback

(68)

Take the Poincaré section asthe walking surface, and let
be Poincaré return map. A simple computation shows

that the invariance condition, implies that
has a well-defined restriction to , and that ,
the Poincaré return map of the hybrid zero dynamics. By [24,
Th. 2], it therefore follows that is exponentially stable for
the full model (13) under the feedback (68) if, and only if, it is
exponentially stable for the hybrid zero dynamics.

Hence, if an output can be selected so that the resulting
1-DOF hybrid zero dynamics admits an exponentially stable
orbit, then an exponentially stable walking motion can be
achieved under feedback control for the full dynamical model
of the robot. Moreover, by the results of Section IV-B, it can be
assured that key modeling assumptions are met for the steady

3That is, the time it takes for a solution initialized at(y ; _y ) to converge to
the origin. The terminology is taken from [7].

state walking motion. The next parts of the paper look at a
means of systematically selecting the output function.

V. COMPUTING AND PARAMETERIZING THE HYBRID ZERO

DYNAMICS

Section IV has provided the conditions for the existence of a
zero dynamics for the complete robot model with impacts, and
established a number of its properties. However, in a concrete
manner, the results are not yet practicable for feedback design
because the explicit computation of the zero dynamics involves
the inversion of a coordinate transformation. This section has
two principal objectives. The first is to present a class of output
functions that leads to computable, closed-form representations
of the zero dynamics. The second objective is to introduce a fi-
nite parameterization of the outputs in a convenient form that
will permit the shaping of the zero dynamics by parameter op-
timization.

A. Almost Linear Output Function Structure

Consider the following output function:

(69)

where specifies independent quantities that are
to be controlled and specifies the desired evolution of
these quantities as a function of the monotonic quantity.
Driving to zero will force to track . Intuitively,
the posture of the robot is being controlled as a holonomic con-
straint parameterized by .

Choosing

(70)

(71)

where is a linear map,
is a linear functional allows the hypotheses of Lemma 1 to be
easily satisfied. Concerning those hypotheses, the output func-
tion structure (69) with and as in (70) and (71), re-
spectively, satisfies HH1) (the output only depends on the con-
figuration variables) and will satisfy HH3) (invertibility) if, and
only if, is full rank. Hence, if HH2) and HH4)
hold, the swing phase zero dynamics can be computed in closed
form. Indeed, the coordinate inverse required in (26) is given by

(72)

In Section V-B, will be specialized to a vector of Bézier
polynomials which will make it easy to achieve the invariance
condition, .

B. Specialization of by Bézier Polynomials

A one-dimensional Bézier polynomial [6] of degree is a
polynomial, , defined by coefficients, ,
per

(73)
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Some particularly useful features of Bézier polynomials are (see
[50, p. 291]) as follows.

1) The image of the Bézier polynomial is contained in the
convex hull of the coefficients (as viewed as points
in , )
(the polynomial does not exhibit large oscillations with
small parameter variations).

2) and .
3)

and

The first feature will be useful for numerical calculations (such
as approximating the gradient of a cost function) where numer-
ical stability is crucial. The second two features are exactly those
used to achieve .

A given function of the generalized coordinates will not,
in general, take values in the unit interval over a phase of single
support. Therefore, to appropriately compose a Bézier polyno-
mial with it is necessary to normalizeby

(74)

which takes values in . Define as

...
(75)

Group the parameters into an matrix, ,
and denote the columns ofby . Eval-
uating (75) and its derivative with respect toat the beginning
(respectively, end) of a phase of single support, that is, where

(respectively, ), leads to the following re-
sult.

Theorem 4 (Achieving ): Assume the hy-
potheses of Theorem 2 and an outputof the form (69) with

, , and as in (70), (75), and (71), respectively. Then,
if, and only if

(76)

Moreover, if , then if, and only if

(77)

where and . That is, if (76) and
(77) hold, then .

Proof: Using Theorem 2, it suffices to show that there ex-
ists at least one point such that
, , and . Evaluating (72)

on , means that .
This implies

(78)

which may be solved for . Achieving
means that must fall in the null space of . This can
be achieved by choosing such that

(79)
Since by assumption it follows4 that
and the solvability of (79) for is ensured.

Remark 4: Theorem 4 constrains the coefficients and
to be functions of . Hence, must be chosen to be three or
greater to impose configuration and velocity periodicity.

VI. CREATING EXPONENTIALLY STABLE FIXED POINTS

THROUGH OPTIMIZATION

The use of optimization in the analysis and design of biped
walking motions is not a new concept. Work as early as the
1970s can be found in the biomechanics literature (see [17]
and [28], for example). In more recent years, the design of
optimal or approximately optimal trajectories for biped robots
has become a popular topic [12], [14], [16], [26], [27], [52],
[53], [55]. In each case the approach has been to design
time trajectories such that a defined cost is minimized, or
approximately minimized, subject to a set of constraints.
The optimization technique employed varies. Cabodevila and
Abba [12] parameterized the robot state as a finite Fourier
series and compared the performance of the following three
algorithms: Nelder and Mead, Genetic, and Simulated An-
nealing. Chevallereau and Aoustin [14], and Chevallereau and
Sardain [16] rewrote the actuated dynamics of the robot as
a polynomial function of the unactuated dynamics and used
sequential quadratic programming (SQP). Hasegawa, Arakawa,
and Fukuda [27] used a modified genetic algorithm to generate
reference trajectories parameterized as cubic splines. Hardt
[26] used an optimization package, DIRCOL [62], which
implements a sparse SQP algorithm and uses a variable number
of cubic splines to approximate the state and piecewise linear
functions to approximate the control signals. Rostami and
Bessonnet [53] applied Pontryagin’s Maximum Principle.
Roussel, Canudas-de-Wit, and Goswami [55] approximated the
dynamics and used a direct shooting optimization algorithm.
While the approach presented here uses the same optimization
algorithm as in [26], the result of the optimization is not an
optimal or approximately optimal open-loop trajectory, but

4First note that� = � � 6= 0 where � =  (q ) _q since
� 6= 0 and� 6= 0 by assumption. Next, note that since both(� ; L � )
and (� ; � ) are valid coordinates onZ the coordinate transformation
� : (� ; � ) ! (� ; L � ), � = (� ; � (� )� ), is a full-rank map. This
implies� (� ) 6= 0 since

@�

@(� ; � )
=

1 0

� � (� )
:

Hence,� 6= 0 impliesL � = c _q 6= 0.
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rather aclosed-loop systemwhich creates an exponentially
stable orbit, and along this orbit energy consumption has
been approximately minimized while satisfying other natural
kinematic and dynamic constraints.

Consider (13) with (69) with , , and as in (70), (75),
and (71), respectively. Choosing the parameters of (70), (71),
and (75) to satisfy the assumptions of Theorem 4 guarantees that
the hybrid zero dynamics exist and the unique control associated
with the single support phase of model (13) is given by (17).
The goal of the approximate optimization will be to minimize
an appropriate cost function while simultaneously satisfying a
number of constraints.

Consider the hybrid zero dynamics (37) with cost function

(80)

where is the step duration, corresponds to step
length, and is the result of evaluating (17) along a solution
of the hybrid zero dynamics. It is interesting to note that
may be calculated from (28) as

(81)

where is a solution of (46) and is monotonic in
which implies that is monotonic in .

The total number of parameters for optimization is
; free parameters for each output5 . The opti-

mization problem may be expressed in Mayer form [4, p. 332]
as

(82)

(83)

(84)

The constraints may be divided into three classes: nonlinear
inequality constraints (NICs), nonlinear boundary equality con-
straints (NBECs), and explicit boundary constraints (EBCs).
The NICs must be satisfied at each point in the time interval of
optimization; the NBECs only need to be satisfied at the begin-
ning or end of the time interval of optimization; and the EBCs
give the initial or final state. The following constraints are typ-
ically required.

Nonlinear Inequality Constraints:The following three NICs
enforce modeling assumptions per constraints on

NIC1) minimum normal ground reaction force experienced
by the stance leg end;

NIC2) maximum ratio of tangential to normal ground reac-
tion forces experienced by the stance leg end;

NIC3) swing leg end height to ensureintersects only the
end of the step.

5By Theorem 4, two parameters per output can be calculated from the other
M � 1.

Fig. 3. Example�(q) measured between the vertical and the line connecting
the hips and the stance leg end.

Note that other NICs, such as a constraint on minimum hip
height, are, in general, required to achieve a desired walking
style.

Nonlinear Boundary Equality Constraints:There are five
natural NBECs that enforce

NBEC1) the average forward walking rate,, defined as step
length divided by step duration

(85)

NBEC2) that the postimpact velocity of the swing leg is pos-
itive;

NBEC3) the validity of the impact of the swing leg end with
the walking surface;

NBEC4) the existence of a fixed point, ;
NBEC5) the stability of the fixed point, .
Explicit Boundary Constraints :There are five EBCs that

give the state at and

EBC1) ;
EBC2) ;
EBC3) ;
EBC4) ;
EBC5) .

Note that cannot be explicitly given as its calcula-
tion requires knowledge of and over the entire time in-
terval of optimization.

Note that without use of the hybrid zero dynamics there
would be states, the derivative of the cost, and control
signals to be included in the problem formulation, while sta-
bility of the closed-loop system would be hard to quantify and
include as a simple optimization constraint. After optimization,
hypothesis HH2), the invertibility of the decoupling matrix,
must be checked. This condition is essentially guaranteed
whenever is finite, since singularities in will
normally result in taking on unbounded values; however, a
simply connected, open set about the periodic orbit where the
decoupling matrix is invertible can beexplicitly computed by a
method developed in [45].
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Fig. 4. Schematic of leg with measurement conventions.

Fig. 5. Schematic of torso with measurement conventions.

VII. EXAMPLE: FIVE-LINK BIPED WALKER

The goal of this section is to illustrate the application of the
presented framework for stability analysis and performance en-
hancement. This will be done on the five-link biped robot de-
picted in Fig. 3 which satisfies hypotheses RH1)–RH5). For
this robot, GH1)–GH6) will be satisfied by restricting choice
of walking gaits appropriately during the optimization process.

A. Robot Model

The five-link model corresponds to the model of a proto-
type five-link biped called RABBIT, which is under construc-
tion by the French projectCommande de Robotsà Pattesof the
CNRS—GdR Automatique[1]. Figs. 4 and 5 detail the mea-
surement conventions. Table I gives the model parameters. The
equations of motion as well as particulars of the impact model
are omitted here for reasons of space, but can be found in [2] in
various printable formats.

B. Almost Linear Output Function Choice

Choosing and clearly
guarantees that is invertible and results in the output

(86)

In light of Remark 4, is chosen to be six, which leaves five
free parameters to be chosen for each output. This implies a total
of 20 output function parameters to be optimized.

TABLE I
MODEL PARAMETERS FOREXAMPLE ROBOT

TABLE II
OPTIMIZATION RESULT STATISTICS

For particular choice of , HH4) must be checked to ensure
smoothness of . This entails evaluating the rank6 of

(87)
where is the height of the swing end. Hypothesis HH2),
the invertibility of the decoupling matrix, is checked for choice
of by using the technique presented in [45]. If the optimization
constraints are satisfied, as detailed in Section VI, so will the
remaining gait, impact model, and output function hypotheses.

C. Parameter Choice via Approximate Optimization

Three additional NICs are required for the example robot
model to walk with a human-like gait. The first two, when sat-
isfied, prevent the stance and swing leg knees from hyperex-
tending. The third, when satisfied, prevents the hips from drop-
ping too low.

The optimization package DIRCOL was used to solve the
optimization problem. The implementation was straightforward
with the exception that DIRCOL is unable to handle noncon-
stant initial EBCs. For this reason EBC1) and EBC2) must be
converted into NBECs7 .

Table II summarizes the result of optimizing for a desired av-
erage forward walking rate of 1.05 m/s. The optimization took
1240 sec 21 min on a PC-based computer with a 1-GHz Pen-
tium III processor. The walking motion is exponentially stable
since and . Fig. 6 is a stick
figure animation of this result for a single step. The walking
motion appears to be natural. Fig. 7 is a plot of the associated
torques at the fixed point. Of the four associated torques, the
peak torque occurs at the stance leg hip and is approximately
47 Nm. Note that this is comparable to the torques associated
with walking at 0.75 m/s as determined in [14]. The peak power
is also associated with the stance leg hip and is approximately

6See Remark 1.
7This is accomplished for EBC1 by the construction

NBEC =
0; x (0)� c� � = 0

jx (0)� c� � j; otherwise

and, similarly, for EBC2).
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Fig. 6. Stick animation of robot taking one step from left to righ. Note that the
stance leg is dotted.

Fig. 7. Torque curves for three steps for the example.

Fig. 8. Constituent functions of the zero dynamics for the example.

267 W. Fig. 8 gives and as functions of . Notice that
is strictly positive while is sign indefinite. Movies of the

walking motion may be found in [2].

VIII. C ONCLUSION

The notion of the hybrid zero dynamics has been introduced
for a one degree of underactuation, planar, bipedal walker with
rigid impacts. This two-dimensional, invariant subdynamics of
the complete hybrid model of the biped robot was shown to
be key to designing exponentially stabilizing controllers for

Fig. 9. Impossible integral curve of the zero dynamics.

walking motions. In particular, exponentially stable orbits of
the hybrid zero dynamics can be rendered exponentially stable
in the complete hybrid model. Since the Poincaré map of the
hybrid zero dynamics is diffeomorphic to a scalar, LTI system,
the existence and stability properties of orbits of the hybrid zero
dynamics are particularly easy to characterize. It was shown
how a special class of output functions can be used to simplify
the actual computation of the hybrid zero dynamics, while at
the same time inducing a convenient, finite parameterization
of the hybrid zero dynamics. Parameter optimization was
then applied to the hybrid zero dynamics to directly design
a provably stable, closed-loop system with satisfied design
constraints, such as walking at a given average speed and the
forces on the support leg lying in the allowed friction cone. All
of the results were illustrated on a five-link walker.

The key property permitting the aforementioned analysis is
the invariance of the swing-phase zero dynamics under the im-
pact map, thereby creating a two-dimensional invariant surface
in the full hybrid model. Without this property, a “stability”
analysis of the swing-phase zero dynamics makes no sense. In
[39], invariance of the swing-phase zero dynamics was achieved
only at a point, thereby creating a one-dimensional invariant sur-
face (i.e., a periodic orbit) in the full-order model. In [24], an
even weaker form of invariance was achieved: the swing-phase
zero dynamics became invariant under the impact map only in
the limit under high-gain feedback control. In work to be pub-
lished, it will be shown that the framework of the hybrid zero
dynamics also allows the design of transition controllers for
switching with stability among controllers that achieve stable
walking at discrete speeds, and for achieving walking at a con-
tinuum of speeds [63].

APPENDIX

Proof of Proposition 1

Proof: Without loss of generality, assume .

Then . To show that is monotonic it suffices to

show that for all . Suppose there exists

some (see Fig. 9) such that and .
Let be the smallest such. The point cannot be an
equilibrium point of (22) because . Hence, there

exits some such that for all , and
. By the assumption that for all

and because , there must exist a such
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that for some . This contradicts the
uniqueness of solutions of (22). Hence, there can be nosuch

that and thus for all . Therefore,
is strictly monotonic.
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