4 research outputs found

    Technology Roadmap for Beyond 5G Wireless Connectivity in D-band

    Get PDF
    International audienceWireless communication in millimeter wave bands, namely above 20 GHz and up to 300 GHz is foreseen as a key enabler technology for the next generation of wireless systems. The huge available bandwidth is contemplated to achieve high data rate wireless communications, and hence, to fulfill the requirements of future wireless networks. Several Beyond 5G applications are considered for these systems: high capacity back-haul, enhanced hot-spot kiosk as well as short-range Device-to-Device communications. In this paper we propose to discuss the trade-offs between scenario requirements and current silicon technologies limits to draw a technology roadmap for the next generation of wireless connectivity in D-band

    A Differential Modulation Scheme for Metasurface-Based Terahertz Communications

    Get PDF
    Metasurface-based terahertz (THz) modulators, which carry information by changing the spatial pattern of the metasurface at every symbol time, are an important component to establish low-cost low-energy–consuming THz communication systems. This paper proposes a differential spatial THz modulation (DSTM) scheme for metasurface-assisted THz communications. In DSTM, the metasurface pattern activation orders are employed to carry information, instead of the metasurface patterns themselves. In this way, the DSTM receiver can perform differential detection without knowing the metasurface response to incident THz signals and the channel state information. The proposed DSTM scheme is applicable to all kinds of metasurfaces enabling THz communications, including transmissive metasurfaces and reflective metasurfaces. For high-rate DSTM systems, we propose an efficient bits-to-activation-order mapping method and a low-complexity detection method. Simulations are conducted to demonstrate the performance of the proposed scheme. It is shown that the proposed scheme pays acceptable penalty compared to the non-differential modulation scheme with coherent detection, which needs to know the metasurface response to the incident signals as well as all the channel state information

    Above-90GHz Spectrum and Single-Carrier Waveform as Enablers for Efficient Tbit/s Wireless Communications

    Get PDF
    International audience—The radio spectrum above 90GHz offers opportunities for huge signal bandwidths, and thus unprecedented increase in the wireless network capacity, beyond the performance defined for the 5G technology. This spectrum is essentially exploited for scientific services, but attracts nowadays many interest within the wireless telecommunications research community, following the same trend as in previous network generations. The BRAVE project that was launched at early 2018, aims at the elaboration of new waveforms able to efficiently operate in the 90–200 GHz spectrum. The researches rely on three complementary works: the definition of relevant communications scenarios (spectrum usage, application, environment, etc); the development of realistic models for the physical layer (propagation channel and RF equipments); and the elaboration of a single-carrier modulation compliant with the propagation channel properties, and allowing improvement on the spectral and energy efficiency. The motivation for this work, and the preliminary results on the waveform definition, are exposed in the present paper. Index Terms—Tbit/s, beyond-5G, above-90GHz, single-carrier. I. INTRODUCTION The activities of research and industrialization concerning the fifth generation (5G) of wireless communication systems are well-under way. Several solutions are proposed for standardization starting with 5G-NR (New Radio) [1]. There are three main objectives driving the development of 5G: the support to extreme wireless broadband services for applications such as the virtual and augmented realities, the 3D 4K video, cloud services, etc.; the connectivity for massive Internet of Thing (IoT) applications as: smart cities and factories, wireless health care; and the support of mission-critical services such as for autonomous vehicle, or security, with strong requirements on latency, guaranteed throughput, etc. All these target applications have highly different needs, but make 5G required to offer: throughputs in the order of Gbps with sub-millisecond latency along with 1000x capacity increase, and 100x connected devices per cell compared to nowadays existing mobile networks. Dense small-cell deployments , centralized RAN (Radio Access Network), advanced MIMO schemes and new millimeter-Wave (mmW) bands are key enablers to achieve the expected increase in spectral efficiency and capacity [2]. Frequency bands 26 or 28 GHz and 39 or 42 GHz will be likely selected for early 5G deployments. Alongside these 5G initiatives, the scientific community has also launched many investigations on the beyond 5
    corecore