5 research outputs found

    Abiotic controls on macroscale variations of humid tropical forest height

    Get PDF
    Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS) satellite observations (2004–2008). We used top canopy height (TCH) of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM) to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and influencing patterns of aboveground biomass stocks and dynamics. Other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.The research was funded by Gabon National Park (ANPN) under the contract of 011-ANPN/2012/SE-LJTW at UCLA. We thank IIASA, FAO, USGS, NASA, Worldclim science teams for making their data available. (011-ANPN/2012/SE-LJTW - Gabon National Park (ANPN) at UCLA

    Spatial and temporal variations of carbon in global tropical forests using satellite and ground observations

    Full text link
    Tropical forests play an important role in the global carbon cycle. Covering 7-10% of the Earth land surface, they contribute to more than half of carbon stock in the world’s forests. Spatial and temporal variations of canopy structure and carbon stock are thus key indicators of ecological processes associated with the changing climate. At macroscales, we evaluated the contributions of climate, soil and topography to the structural variations of pan-tropical forests. Using LiDAR observations from satellite, we built spatial regression models between the LiDAR-derived canopy height and abiotic variables. Results show these factors and spatial contextual information can explain more than 60% of the variations in the heights of these forests. Within the tropics, Amazonian forests contain nearly half of the tropical carbon stocks and thus a vital part to the global carbon budget. The impacts of droughts in Amazonia have been recorded as short-term tree mortality and biomass loss from inventory plots. Using interannual satellite LiDAR measurements from 2003 to 2008, we quantitatively assessed carbon lost after the 2005 Amazon drought. Through careful signal filtering and sampling strategies, we found a significant loss of carbon over the Amazon basin, turning the ecosystem to a net source of carbon at 0.63 PgC/yr (0.16-1.10 PgC). And there was no sign of complete recovery 3 years after the drought. Besides natural disturbances such as droughts, human activities vastly alter the carbon footprint in the tropics. Tropical secondary forests (SF), mainly restored from deforestation, are often identified as a major terrestrial carbon sink. We analyzed changes in SF from 2004 to 2014 in the Brazilian Amazon and found SF contribution to regional carbon sink was negligible, due to significant turnover and frequent clearing activities. But it has the capacity of more than 0.2 PgC/yr net sink to compensate for total emissions from deforestation, if policies to restore secondary forests are implemented and enforced. My dissertation studies provide a clearer picture of abiotic controls over the pan-tropical forests and a better understanding of the carbon dynamics in regions of post-drought Amazonia and secondary forests in the Brazilian Amazon

    Resource availability and disturbance shape maximum tree height across the Amazon

    Get PDF
    Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.Peer reviewe

    Resource availability and disturbance shape maximum tree height across the Amazon

    Get PDF
    Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.Peer reviewe

    Interpreting forest diversity-productivity relationships : volume values, disturbance histories and alternative inferences

    Get PDF
    Understanding the relationship between stand-level tree diversity and productivity has the potential to inform the science and management of forests. History shows that plant diversity-productivity relationships are challenging to interpret—and this remains true for the study of forests using non-experimental field data. Here we highlight pitfalls regarding the analyses and interpretation of such studies. We examine three themes: 1) the nature and measurement of ecological productivity and related values; 2) the role of stand history and disturbance in explaining forest characteristics; and 3) the interpretation of any relationship. We show that volume production and true productivity are distinct, and neither is a demonstrated proxy for economic values. Many stand characteristics, including diversity, volume growth and productivity, vary intrinsically with succession and stand history. We should be characterising these relationships rather than ignoring or eliminating them. Failure to do so may lead to misleading conclusions. To illustrate, we examine the study which prompted our concerns —Liang et al. (Science 354:aaf8957, 2016)— which developed a sophisticated global analysis to infer a worldwide positive effect of biodiversity (tree species richness) on “forest productivity” (stand level wood volume production). Existing data should be able to address many of our concerns. Critical evaluations will improve understanding.</p
    corecore