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Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the 

distribution of the very tallest trees remain poorly understood. The recent discovery of grove of 

giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. 

We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of 

old growth and second growth forests randomly sampling the entire Brazilian Amazon. We 

investigated how resources and disturbances shape the maximum height distribution across the 

Brazilian Amazon through the relations between the occurrence of giant trees and environmental 

factors. Common drivers of height development are fundamentally different from those influencing 

the occurrence of giant trees. We found that changes in wind and light availability drive giant tree 

distribution as much as precipitation and temperature, together shaping the forest structure of the 

Brazilian Amazon. The location of giant trees should be carefully considered by policymakers 

when identifying important hotspots for the conservation of biodiversity in the Amazon.
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Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the 

distribution of the very tallest trees remain poorly understood. The recent discovery of grove of 

giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. 

We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of 

old growth and second growth forests randomly sampling the entire Brazilian Amazon. We 

investigated how resources and disturbances shape the maximum height distribution across the 

Brazilian Amazon through the relations between the occurrence of giant trees and environmental 

factors. Common drivers of height development are fundamentally different from those 

influencing the occurrence of giant trees. We found that changes in wind and light availability 

drive giant tree distribution as much as precipitation and temperature, together shaping the 

forest structure of the Brazilian Amazon. The location of giant trees should be carefully 

considered by policymakers when identifying important hotspots for the conservation of 

biodiversity in the Amazon. 

 

Keywords: sentinel tree, height, giant trees, dominant tree, tall tree, distribution, modeling, 

random forest, envelope model  
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Introduction 

The Amazon is the largest tropical forest on Earth, covering 5.5 million square kilometers, and 

storing ~ 17% of all vegetation carbon (Feldpausch et al., 2012). Ecologists have long taken an 

interest in comparing forest structure across the tropics (Yang et al., 2016), and have reached a 

consensus that the Amazon supports shorter trees, and therefore stores a lower amount of carbon 

per hectare, than the forests of tropical Africa and Asia (Cao & Woodward, 2002; Feldpausch et 

al., 2012). Previous studies have shown the occurrence of tall canopy regions in the Amazon and 

debated the factors that govern Amazon tree growth (Lefsky 2010; Simard et al., 2011; 

Larjavaara, 2013; Tao et al., 2016a). However, the recent confirmation of the existence of giant 

trees - up to 88 m tall - in the Amazon basin (Gorgens et al., 2019) challenges some paradigms 

and poses new questions about the drivers causing the spatial distribution of tall trees, and 

consequently about how maximum tree height is controlled across different regions.  

To reach immense size, trees must fulfill at least three conditions:  They must (1) have evolved 

to be capable of transporting water to great heights overcoming highly negative water potentials 

(Koch et al., 2004; Niklas, 2007; McDowell et al., 2008);  (2) inhabit an area with environmental 

conditions (such as climate, soil properties, and water) that meet species-specific 

requirements (Scheffer et al., 2018) and (3) grow in regions with a low frequency of natural or 

anthropogenic disturbance events (Larjavaara, 2013; Lindenmayer & Laurance, 2016; Scheffer et 

al., 2018; Enquist et al., 2020).  

Height growth is partly governed by local factors such as water availability, temperature, rooting 

depth, and soil type (Anderegg et al., 2016; McDowell & Allen, 2015; Coomes et al., 2006; 

Niklas, 2007), with precipitation and potential evapotranspiration consistently reported as key 

factors determining plant height across biomes (Moles et al., 2009; Larjavaara, 2013; Rueda et 

al., 2016). Resource availability (e.g. sunlight, nutrients, CO2, and water) controls a tree’s ability 

to produce biomass from the products of photosynthesis. In contrast, natural disturbances (e.g. 

wind-throw, drought, or lightning and anthropogenic actions (e.g. selective logging, forest 

fragmentation) increase the likelihood of mortality and limit the time available for trees to grow 

taller (Bennett et al., 2015; Yanoviak et al., 2019; Almeida et al., 2019; Powers et al., 2020). 

Species of tall trees are likely to have evolved strategies for surviving diseases and A
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pathogens (van Gelder et al., 2006; Aleixo et al., 2019) as well as climatic 

fluctuations (Sakschewski et al., 2016) and resisting wind damage (Jagels et al., 2018).  

The sheer size of the Amazon, its environmental heterogeneity, and species diversity pose 

challenges and practical difficulties to understand general ecological relationships and 

biogeographical patterns (Tuomisto et al., 2019). Forest inventory plots provide many valuable 

insights to investigate the influences of the environment on tree height but they only represent a 

minuscule fraction of the total forest area (Chave et al., 2020). Currently, a network of 5,351 

forest inventory plots established across the Brazilian Amazon, of known and published sites 

recently compiled by (Tejada et al., 2019), represents only 0.0013% of the total forest area in this 

region. In addition, the plot distribution is spatially clustered in close proximity to major roads or 

large rivers (Stropp et al., 2020), implying a spatial distribution bias (Marvin et al., 2014). About 

42% of the Brazilian Amazon lies over 50 km from the nearest forest inventory plots (Tejada et 

al., 2019). Remote sensing can remove sampling biases and uncertainty about ecological 

patterns (Schimel et al., 2015) and provides large datasets to uncover the environmental controls 

of forest structure (Asner et al., 2010). In particular airborne lidar (light detection and ranging) 

generates valuable high-resolution 3D information of forest canopy structure (Görgens et al., 

2016; Coomes et al., 2017), and can provide a link between field and satellite data (Asner, 2009; 

Bae et al., 2019). 

In this study, we employed the largest airborne lidar data collection in the Amazon to contribute 

to the understanding of (1) how resources and disturbances shape the maximum height 

distribution across the Brazilian Amazon, and (2) what drives the occurrence of giant trees (taller 

than 70 meters). We conducted an extensive analysis relating environmental variables to the 

maximum height recorded in lidar transects.  

Methods  

Between 2016 and 2018, the EBA airborne missions (conducted by the Brazilian National 

Institute for Space Research (INPE) and funded by Amazon Fund) collected airborne lidar data 

from 906 transects of 375 ha (12.5 x 0.3 km) each. A majority of the transects were flown over 

randomly selected locations of old growth and second growth as forests defined by the PRODES 

and TerraClass databases (PRODES, INPE, 2016; TerraClass, INPE, 2014). PRODES separates 
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forests from non-forest while TerraClass identifies second growth forest and other land 

covers.  A small number of transects intentionally overlapped existing field plots for biomass 

calibration. Details about lidar processing and the EBA project characteristics have been 

published previously (see supplementary material from Gorgens et al. 2019). Briefly, the average 

pulse density was 4 pulses m
−2

, the field of view equal to 30°, and the nominal flying altitude of 

600 m above ground. The pulse footprint was less than 30 cm at range.  

For each transect we identified the returns from the ground and vegetation. We interpolated 

ground returns to produce a 1m horizontal resolution digital terrain model (DTM). Using the 

DTM, we calculated the heights above ground from vegetation returns. The uppermost 

vegetation heights were then employed to compute a 1 m horizontal resolution canopy height 

model (CHM). While errors in estimation of terrain height can affect CHM estimations, previous 

studies in tropical forests show that lidar surveys with at least 4 returns per m
2
 permit accurate 

DTM generation and tree height estimation even in complex terrain (Clark et al., 2004; Glenn et 

al., 2011; Leitold et al. 2015; Andrade et al., 2018). 

Our analysis was based on the tallest tree for each transect. A forest consists of plants that occur 

in different combinations over the landscape, and each individual is sensitive to certain aspects 

of the environment (Vanclay, 1992). The soil (fertility, drainage), climate (temperature and 

rainfall patterns), topography (altitude, aspect), and other factors can only give a general 

indication of site productivity because they fail to account for any local variations in the site (e.g. 

the species present) (Binkley et al., 2004). Site comparisons should depend upon indicators not 

unduly influenced by stand condition, land use history, or diversity. For sites that are sufficiently 

large, the maximum height that a species is likely to attain is an excellent indicator of site 

conditions for tree growth (Daubenmire, 1976). Therefore we selected a single tallest tree per 

transect using an individual tree approach based on a local maximum filter. For each transect, the 

largest tree was inspected to exclude spurious maxima not related to tree structure. (Supporting 

Figure 1). 
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Environmental variables 

In order to investigate drivers influencing the spatial distribution of giant trees, we initially 

considered a total of 18 environmental variables: (1) fraction of absorbed photosynthetically 

active radiation (FAPAR; in %); (2) elevation above sea level (elevation; in m);  (3) the 

component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s
-1

); (4) the 

component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s
-1

); (5) 

the number of days not affected by cloud cover (clear days; in days yr
-1

); (6) the number of days 

with precipitation above 20 mm (days > 20mm; in days yr
-1

 ); (7) the number of months with 

precipitation below 100 mm (months < 100mm; in months yr
-1

 ) ; (8) lightning frequency (flash 

rate yr
-1

); (9) annual precipitation (in mm yr
-1

); (10) annual potential evapotranspiration (in mm 

yr
-1

); (11) coefficient of variation of monthly precipitation (precipitation seasonality; in %); (12) 

amount of precipitation on the wettest month (precip. wettest; in mm month
-1

); (13) amount of 

precipitation on the driest month (precip. driest; in mm month
-1

); (14) mean annual temperature 

(in °C); (15)  standard deviation of monthly temperature (temp. seasonality; in °C); (16) annual 

maximum temperature (in °C); (17) soil clay content (in %); and (18) soil water content 

(volumetric % at field capacity at 30 cm).   Data sources are described in the following 

paragraphs and are listed in Table 1. 

The FAPAR was derived from land surface reflectance product calibrated and corrected from the 

National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High-Resolution 

Radiometer (AVHRR), which is a consistent time-series dataset spanning from the mid-1980s to 

present and suitable for climate studies (Tao et al., 2016b). FAPAR is a primary vegetation 

variable controlling the photosynthetic activity of plants and is considered an essential climate 

variable (Mason et al., 2010). 

The elevation was based on the third version of the Shuttle Radar Topography Mission (SRTM) 

provided by the National Aeronautics and Space Administration Jet Propulsion Lab (NASA 

JPL) (Farr et al., 2007; Liu et al., 2014). The SRTM mission collected data during ten days of 

operations, using two synthetic aperture radars: NASA’s C band system (5.6 cm wavelength) and 

an X band system supplied by DLR (3.1 cm). C-band partially penetrates the vegetation canopy, 

with depth varying with vegetation structure. Because Amazonian vegetation is dense A
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throughout, for the purposes of this study the C-band DEM is assumed to vary consistently with 

topography across the region. 

We used the maximum daily mean wind speeds over the last 5 years from the fifth major global 

reanalysis (ERA5) produced by the European Centre for Medium-Range Weather Forecasts 

(ECMWF). The reanalysis combined model data with observations from across the world into a 

globally complete and consistent dataset (Olauson, 2018). Two wind velocities were considered: 

u-speed which is the zonal velocity (i.e. the component of the horizontal wind towards east), and 

v-speed which is the meridional velocity (i.e. the component of the horizontal wind towards 

north). These products are used extensively for modeling wind power both in academia and 

industry (Olauson, 2018; Albergel et al., 2019; Ramon et al., 2019).  Although the ERA5 wind 

product gives mean wind speeds, means are related to extreme wind speeds by a Weibull 

distribution (Takle & Brown, 1978; Seguro & Lambert, 2000). Therefore a long-term variation in 

mean wind speed will correspond to variability and trends in extremes. ERA5 does not ingest 

surface winds from land stations to compute the wind speeds. Instead, ERA5 winds are estimated 

in planetary boundary layer schemes based on surface characteristics (Ramon et al., 2019). 

The number of clear days was computed based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) surface reflectance products. MODIS products provide an estimate 

of the surface spectral reflectance as it would be measured at ground level in the absence of 

atmospheric scattering or absorption (Kang et al., 2005; Bisht & Bras, 2010). We used the Terra 

MOD09GA Version 6 product, which provides an estimate of the surface spectral reflectance of 

MODIS, corrected for atmospheric conditions. 

Temperature and precipitation were obtained from the WorldClim database of bioclimatic 

variables, which are derived from weather station data compiled for the 1950-2000 

period (Hijmans et al., 2005; Fick & Hijmans, 2017). The main source of data was the Global 

Historical Climatology Network (GHCN), complemented with other global, national, regional, 

and local data sources, which were added if they were further than 5 km away from stations 

already included in the GHCN. 

The lightning frequency was provided by the Lightning Imaging Sensor (LIS) instrument 

onboard the Tropical Rainfall Measuring Mission provided by NASA Earth Observing System A
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Data and Information System (EOSDIS) Global Hydrology Resource Center. The LIS provided 

the basis for the development of a comprehensive global thunderstorm and lightning climatology 

to detect the distribution and variability of total lightning occurring in the Earth (Albrecht et al., 

2016). 

The potential evapotranspiration was provided by the TerraClimate dataset, a global monthly 

climate and water balance for terrestrial surfaces spanning 1958–2015. The layer combined high-

spatial-resolution climatological normals from WorldClim with Climate Research Unit (CRU) 

Ts4.0 and the Japanese 55-year Reanalysis (JRA-55) data. The reference evapotranspiration was 

calculated using the Penman-Monteith approach (Abatzoglou et al., 2018). 

The number of months per year with precipitation below 100 mm and the number of days per 

year with precipitation above 20 mm were computed based on the Climate Hazards Group 

InfraRed Precipitation with Station data (CHIRPS) dataset. CHIRPS incorporated 0.05° 

resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend 

analysis and seasonal drought monitoring (Funk et al., 2015).  

Edaphic variables were obtained from The OpenLandMap produced by the OpenGeoHub 

Foundation and contributing organizations. The clay content (% fine particles < 2 μm) and water 

content layers (volumetric % at field capacity at 30 cm), both with a spatial resolution of 250 m, 

were created based on machine learning predictions from a global compilation of soil profiles 

and samples (Arsanjani et al., 2014). 

To help visualize regional effects, we followed a biogeographic analyses of terrestrial plant and 

animal taxa that divides the Brazilian Amazon into eight regions of Morrone (2014). This 

classification of the Neotropical region and seeks to provide a universal, objective, and stable 

classification for describing distributions of taxa or comparing different biogeographic analyses 

(Morrone, 2014).   

Random Forests and Maximum Entropy 

To explore the influence and importance of the environmental variables for development in tree 

height, we employed a machine learning approach called “random forests” (Breiman, 2001). The 

algorithm implemented in the R package randomForest (Liaw & Wiener, 2002) generates a large A
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number of regression trees, each constructed considering a random data subset. The regression 

trees are used to identify the best sequence for splitting the solution space to estimate the output 

using k-fold (k = 15) cross-validation and 500 classification and regression trees. The number of 

variables randomly sampled as candidates at each split was set to 2. Using the coordinates of the 

tallest tree within each LiDAR transect, we performed a simple extraction of the values for all 

variable layers.  Among the initial 18 environmental variables, two of them (precipitation of 

driest month and months < 100mm) were excluded due to high correlation (r > 0.80) to other 

independent variables. Tree height was then modeled with the 16 remaining variables. The 

adjusted model was evaluated considering the mean absolute error (MAE), root mean squared 

error (RMSE), and coefficient of determination (R²) of cross-validated predicted versus observed 

values. To assess the overall relative variable importance, we used the mean increase in 

accuracy. We visualized the relations of the environmental variables to maximum height using 

marginal plots, estimating the maximum height by one variable at a time, keeping other variables 

constant at an average value. The resulting model was implemented to map estimated maximum 

tree heights across the Amazon.   

Focusing on the tallest trees – giants over 70 m in height – we built an environmental envelope 

model to assess the conditions which favor their occurrence. We employed the maximum 

entropy approach (MaxEnt) commonly applied to modelling species geographic distributions 

with presence-only data to discriminate suitable versus unsuitable areas (Phillips et al., 2006). 

The importance of variables in the MaxEnt model (measured as increase in accuracy) was used 

to indicate the most relevant characteristics associated with giant trees and the potential locations 

for their occurrence. In its optimization routine, the algorithm tracks model improvement when 

small changes were made to each coefficient value associated with a particular variable.  Each 

variable was then ranked based on the proportion of all contributions. The resulting MaxEnt 

model was implemented using the same 16 environmental variables described above to produce 

a map of the probability of occurrence for giant trees taller than 70 m across the Brazilian 

Amazon. 
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Results 

The height distribution of the tallest individual trees selected for further analysis is presented in 

Fig. 1. Trees exceeding 50 m were registered in 540 transects, widely distributed across the 

Brazilian Amazon in all eight biogeographic regions (Fig 2). Within that set of transects, only 23 

had giant trees above 70 m and only 6 registered trees above 80 m. The distribution of the giant 

trees is concentrated in the eastern Amazon in the Roraima and Guianan Lowlands 

biogeographic regions (Fig 2). 

 

Figure 1. Maximum tree height distribution of the 906 trees extracted from the 906 airborne 

lidar transects distributed across the Brazilian Amazon. 

 

Figure 2. Maps of the Brazilian Amazon and biogeographic regions showing the location of 

transects considering height thresholds: (a) 50 m, (b) 60 m, (c) 70 m, and (d) 80 m. Black circles 

indicate transects with trees taller than the threshold, white circles indicate remaining transects.  

 

The variables with the most explanatory power (based on increase in accuracy) in the random 

forests model were (1
st
) the number of clear days, followed by (2

nd
) clay content in the soil and 

(3
rd

) elevation. The difference between the 4
th

 and the 15
th

 positions of the importance rank was 

less than 6 units, ranging from 22.4 to 15.6. The variable soil water content (16
th

) was the 

weakest predictor (Table 1). Predictor variable importance could also be measured by an 

alternative metric node purity that generally correlated with the increase in accuracy (Supporting 

Figure 2).  

The random forest model obtained MAE = 3.62 m, RMSE = 4.92 m, and R² = 0.735 (observed 

versus predicted height plot is shown in Supporting Figure 3; the R object is available to 

download in https://doi.org/10.5281/zenodo.4061838).  Mapped across the Brazilian Amazon the 

model predicted maximum tree height above 70 meters in 56,747 km² (1.03% of the area). Those 

regions are concentrated in the Eastern Amazon, with trees achieving the greatest heights in the 

northeastern portion of the Roraima biogeographic region (Fig. 3).   A
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The lidar sampling design included old-growth, degraded and second-growth forests often mixed 

in the same transect. Given the difficulties to accurately classify forest types and the mixture of 

forest types within transects, we modeled all transects including second-growth and degraded 

forests. In order to explore the potential effect of forest degradation, we repeated the random 

forest model after removing low values of FAPAR (< 80%) that are associated with degraded 

forests and anthropogenic regions - eliminating 133 transects. The spatial distributions for 

maximum tree height persisted after removing these potential anthropogenic effects. Variable 

importance was similar and consistent (Supporting Table 1).  

 

Figure 3. The maximum tree height distribution estimated by the random forests model based on 

environmental variables. The map is available at https://doi.org/10.5281/zenodo.4036988.    

 

The number of clear days was the strongest predictor of maximum height (Table 1). The shape of 

this relation resembles a step function (Fig. 4), in which regions with the number of clear days 

below 130 days per year support tall trees, with an abrupt decline in maximum height above this 

level. An increase in soil clay content from 20% to 40% translated into a 7 m increase in 

maximum height.  Elevation was also a key predictor of tree height, with low-lying forests 

growing 7 m lower than trees in terrains above 40 m above sea level.  Our results also 

demonstrate that mean annual precipitation was a key factor related to maximum height, with a 

tolerance curve peaking at around 2,300 mm yr
-1

 as optimal annual precipitation across the 

Brazilian Amazon. In comparison to these areas, we observe a 4 m decline in maximum tree 

height in regions with annual precipitation below 1,500 mm yr
-1

 or above 3,000 mm yr
-1

. From 

the intermediate importance variables, we highlight the zonal velocity (u-speed) and FAPAR 

influencing height variation in ranges around 6 m.               

 

Figure 4. The marginal plot obtained for each environmental variable in the random forests 

model, keeping other variables constant at the average value.  
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The results of the MaxEnt model focus on the occurrence of giant trees taller than 70 (the R 

object is available to download in https://doi.org/10.5281/zenodo.4066653). The giant tall trees 

were found in conditions characterized by a much smaller set of environmental variables that 

drove the large-scale patterns of maximum height (Fig. 5). The maximum entropy model shows 

that the occurrence is dominated by wind speed (relative importance of 67.7 %). The second 

most important driver of tall tree occurrence was the elevation above sea level (relative 

importance of 12.3 %). The resulting map of predicted occurrence of the tallest trees in the 

Amazon from the MaxEnt model shows that the probability of maximum tree height occurrence 

is highest in northeastern Amazon (Fig. 6), more specifically in the Roraima and Guianan 

Lowlands biogeographic regions.       

 

Figure 5. The marginal plot obtained for each environmental variable in the Maximum Entropy 

model, keeping others constant on the average.  

 

Figure 6. The probability of giant tree occurrence based on environmental conditions estimated 

by the Maximum Entropy model. The map is available at 

https://doi.org/10.5281/zenodo.4037101.    

 

Discussion 

We found that maximum tree height across the Brazilian Amazon was related to a large number 

of environmental variables. The number of cloud free days stands out as the most relevant 

variable to explain maximum height distribution, followed closely by wind speed, soil clay 

content, elevation, precipitation and temperature seasonality, potential evapotranspiration, and 

maximum temperature. In contrast, the distribution of giant trees >70 m was strongly driven by 

low wind speeds.  A
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Maximum height distribution 

Many environmental variables with complementary effects on species composition, as well as on 

their physiological and structural traits, play a crucial role in the tree lifespan (Muller-Landau, 

2004) and, consequently, on height development. Previous studies have observed two large-scale 

gradients in the Amazon affecting forest composition and structure: one from the Guiana Shield 

to the Southwestern Amazon, related to variation in soil fertility, and another gradient from 

Colombia to the Southeastern Amazon, related to the length of the dry season (Baker et al. 2004; 

Malhi et al. 2006; ter Steege et al., 2006).  

We found that maximum height was strongly related to the number of clear days, followed by 

soil clay content, elevation, annual precipitation and precipitation seasonality. An increase in 

cloud-free days is associated with an increase in direct solar radiation (Barkhordarian et al., 

2019), and high in the vapor pressure deficit, or atmospheric dryness, leading to water stress in 

trees (Williams et al., 2012; Nunes et al., 2019). In contrast, the increase in diffuse radiation 

under clouds is generally associated with an increase in photosynthetic activity (Gu, 2003). Tall 

trees directly exposed to direct sunlight and high temperatures must rely on stomatal 

control to avoid excessive water loss leading to leaf heating (Drake et al., 2018; Rowland et al., 

2015). Tree responses to direct solar radiation are dependent on the species and developmental 

stage, with physiological and structural changes to maximize either growth or survival (Wright et 

al., 2004; Nunes et al., 2019; Poorter & Bongers, 2006). As trees grow taller, increasing leaf 

water stress due to gravity and path length resistance can limit leaf expansion and 

photosynthesis, and consequently limit further height growth (Koch et al., 2004).  

An increase in soil clay content also was associated with an increase in maximum height. In the 

Amazon, clay content is often higher on flat terrain (Laurance et al., 1999) decreasing from 75% 

to 5% when moving from the plateau areas to the valleys (Ferraz et al., 1998; Toledo et al., 

2016). A previous study showed an increase in wood density from stands on sandy soils in 

valleys to clayey soils on plateaus at a local scale in the Central Amazon, and lower tree 

mortality rates in clayey soils (Toledo et al., 2016). We suggest that the well-structured clay soils 

allow trees to obtain an additional volume of water during the dry season. Well structured clay 

soils are common in the eastern Amazon, compared to central and western Amazon (Fisher et al., 

2008; Hodnett et al., 1997). The dimorphic root systems associated with deep structured clayey A
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soils can redistribute water from deep layers to the soil surface during periods of 

drought (Broedel et al., 2017).  

Elevation was also a key predictor of tree height, with low-lying forests growing potentially less 

than trees in terrains over 40 m a.s.l.. The topographic gradient is probably related to flooding in 

the low elevation transects. Rivers erode the terra firme terraces and create floodplains of 

variable sizes dating to the Miocene, with terrace–floodplain elevation differences decreasing 

eastwards from the Andes (Hamilton et al., 2007). The terrace and floodplain forests in the 

Amazon also have differences related to species turnover, which reveals the micro-topography 

effects on the tree survival rate in Amazonian forests (Asner et al., 2015). Due to higher turnover 

on floodplains, trees live, on average, for less time and are less likely to achieve giant status. 

Mean annual precipitation was also a key factor supporting the presence of tall trees. A tolerance 

curve associated the height of tall trees with precipitation peaked at 2,300 mm  yr
-1

 and 

suggested that areas too dry or too wet may both inhibit the growth of tall trees.  We observed a 

decline in maximum tree height in regions with annual precipitation below 1,500 mm yr
-1

 or 

above 3,000 mm yr
-1

. The availability of soil water depends on both precipitation and 

evapotranspiration, and our results suggest that below 1,500 mm yr
-1

 evapotranspiration may 

exceed precipitation in the Amazon leading to mortality by hydraulic failure for tall trees under 

drought conditions (McDowell et al., 2008). Mean annual precipitation above 2,300 mm yr
-1

 may 

be related to excess water, and the combination of high precipitation and poorly drained soils 

may result in anaerobic conditions with negative effects on tree growth and survival (Quesada et 

al., 2009). Furthermore, greater precipitation tends to be related to the occurrence of storms and 

strong winds associated with increases in tree mortality (Negrón-Juárez et al., 2018, Aleixo et al., 

2019).  

Conditions supporting giant trees        

Low wind speed was the single most important predictor of the occurrence of the trees over 70 m 

in the Brazilian Amazon in the MaxEnt model. The fact that trees adapt to their local wind 

environment and are shorter in windy locations has been widely observed in temperate 

regions (Telewski, 2006, Bonnesoeur et al., 2016). A balance between tree structural strength 

and wind shear forces contributes to set an upper limit to tree height development (Klein et al., A
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2015). Wind driven damage and mortality could drive part of the pattern we observed across the 

Amazon, with trees over 70 m tall having a 50-75% likelihood of occurring in the calmest areas 

but a sharply decreasing probability with stronger winds.  

The spatial distribution we observed also aligned with observed disturbance rates, that are three 

times higher in the Western compared to the the Eastern Amazon (Espírito-Santo et al., 2014). 

Wind damage is most common from September to February (Negrón-Juárez et al., 2017) and 

taller trees have higher rates of mortality in wind storms (Rifai et al., 2016). This suggests that 

wind disturbance shapes the observed patterns of giant tree distribution. The importance of wind 

speed was also apparent in the random forests model which showed a 9 m reduction in the 

estimated tree height from the calmest to the windiest areas. The zonal velocity (i.e. the east-west 

component), which is the prevailing wind direction in the region, drives this pattern. 

Because the maximum entropy model was highly sensitive to the effect of wind speed, we tested 

the model excluding both wind speed variables. We found that the importance of variables 

shifted to lightning (importance changed from 3 to 34), potential evapotranspiration (importance 

changed from 4 to 18) and precipitation seasonality (importance changed from 0.5 to 15). 

Secondary factors such elevation, annual precipitation and water content did not change after 

removing wind speed. These shifts indicate that wind speed is indeed adding information.  

Interestingly, our data showed that the lightning flash rate was only weakly related to maximum 

forest height patterns in both the random forests and MaxEnt models. Despite being an important 

cause of death of individual trees (Marra et al., 2014; Niklas, 1998) and the most important cause 

of large tree deaths in a tropical forest in Panama (Yanoviak et al., 2019), lightning and 

associated storms were not the dominant factor limiting the occurrence of the tallest trees in our 

analysis. 

The locations of the tall trees (> 70 m - giant trees) in the eastern Amazon coincide with forests 

that have a high basal area predicted by statistical modelling of permanent plot data (Malhi et al., 

2006; ter Steege et al., 2006). Young soils nearer the Andes, as well as the sedimented and 

flooded lowlands, are richer in nutrients, thereby supporting fast-growing, low wood density 

species with high turnover rates and, as a result, the trees do not reach extremely large 

sizes (Marra et al., 2014; Quesada et al., 2011; Phillips et al., 2004). Soil physical properties A
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combined with limited nutrient supply in eastern Amazon favor slow-growing species that invest 

their resources in structures that can support taller and bigger trees with a long lifespan (Malhi et 

al., 2004; Quesada et al., 2009). 

Current climate models differ in their predictions of large-scale changes in wind patterns. 

However, warmer temperatures will mean that the air can hold more moisture, which will likely 

make convective storms more intense. Whatever the change in environmental conditions, it is 

likely to occur faster than trees can adapt. Our results showed that precipitation and temperature 

have a lower importance than expected from previous studies. Nevertheless, changes in the 

precipitation and radiation regimes (strongly linked to the number of cloudy days) could reshape 

forest biomes. Ultimately, the association between environmental conditions and mechanisms of 

natural selection are key to understanding the complexity of this process in a changing climate. 
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Table 1. Variables used to estimate maximum height ranked by variable importance results in 

the random forests model  

Variable Layer Definition Related to Unit Source Spatial 

resolution 

(Time 

interval) 

Expected 

influence in 

max. height 

Importance 

(increase 

accuracy) 

clearDays number of clear days 

per year 

energy balance 

- water balance 

- radiation 

days MODIS 500 m 

(2014 - 

2018) 

Positive 25.5 

clayContent fraction of clay 

content 

soil structure - 

physical 

properties - 

water 

availability 

% OpenLandMap 250 m Positive 23.4 

topography elevation above sea 

level 

distance to 

water - 

flooding zones 

- soil 

m SRTM 30 m Positive 23.3 

pannual average annual 

precipitation 

precipitation - 

precipitation 

intensity - 

precipitation 

distribution 

mm y-1 WorldClim 30 arc 

seconds 

Positive 22.4 

pseason precipitation 

seasonality 

precipitation - 

precipitation 

intensity - 

precipitation 

distribution 

mm WorldClim 30 arc 

seconds 

Positive 21.3 

tseason temperature 

seasonality 

temperature - 

temperature 

distribution 

C WorldClim 30 arc 

seconds 

Negative 21.3 

uspeed zonal speed (W-E) storms - 

convective 

winds 

m s-1 ECM-RWF 0.25 degrees 

(2014-2018) 

Negative 21.1 

pet potential 

evapotranspiration 

energy balance 

- water balance 

- radiation - 

vegetation 

health - 

anthropic 

mm yr-1 TerraClimate 2.5 arc 

minutes 

(1990 - 

2016) 

Positive 20.2 
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regions - soil 

exposure 

fapar fraction of absorbed 

photosynthetically 

active radiation 

radiation - 

vegetation 

health - 

anthropic 

regions - soil 

exposure 

% NOAA AVHRR 0.05 degrees 

(2016 - 

2018) 

Positive 20.0 

pwettest precipitation of the 

wettest month 

precipitation - 

precipitation 

intensity - 

precipitation 

distribution 

mm 

month-1 

WorldClim 30 arc 

seconds 

Negative 19.9 

tmax maximum 

temperature 

storms - 

convective 

winds 

C WorldClim 30 arc 

seconds 

Negative 19.8 

vspeed meridional speed (N-

S) 

storms - 

convective 

winds 

m s-1 ECM-RWF 0.25 degrees 

(2014-2018) 

Negative 18.1 

lightning lightning rate storms - 

convective 

winds 

flashes 

rate yr-1 

LIS TRMM 0.1 degrees 

(1998 - 

2018) 

Negative 18.0 

days20 days with 

precipitation greater 

then 20 mm 

storms - 

convective 

winds - 

precipitation 

days CHIRPS 0.05 degrees 

(2014-2018) 

Negative 16.4 

tannual daily average annual 

temperature 

temperature - 

temperature 

distribution 

C WorldClim 30 arc 

seconds 

Negative 15.6 

waterContent fraction of water 

content in field 

capacity at 30 cm 

soil structure - 

physical 

properties - 

water 

availability 

% OpenLandMap 250 m Positive 9.7 

month100 month with 

precipitation below 

100 mm 

precipitation - 

precipitation 

intensity - 

precipitation 

distribution 

months CHIRPS 0.05 degrees 

(2014-2018) 

Negative Removed by 

high 

correlation 

pdriest precipitation of the 

driest month 

precipitation - 

precipitation 

intensity - 

precipitation 

distribution 

mm 

month-1 

WorldClim 30 arc 

seconds 

Positive Removed by 

high 

correlation A
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