28 research outputs found

    On the complexity of the chip-firing reachability problem

    Get PDF
    In this paper, we study the complexity of the chip-firing reachability problem. We show that for Eulerian digraphs, the reachability problem can be decided in strongly polynomial time, even if the digraph has multiple edges. We also show a special case when the reachability problem can be decided in polynomial time for general digraphs: if the target distribution is recurrent restricted to each strongly connected component. As a further positive result, we show that the chip-firing reachability problem is in co-NP for general digraphs. We also show that the chip-firing halting problem is in co-NP for Eulerian digraphs

    Abelian networks II. Halting on all inputs

    Full text link
    Abelian networks are systems of communicating automata satisfying a local commutativity condition. We show that a finite irreducible abelian network halts on all inputs if and only if all eigenvalues of its production matrix lie in the open unit disk.Comment: Supersedes sections 5 and 6 of arXiv:1309.3445v1. To appear in Selecta Mathematic

    Abelian networks III. The critical group

    Full text link
    The critical group of an abelian network is a finite abelian group that governs the behavior of the network on large inputs. It generalizes the sandpile group of a graph. We show that the critical group of an irreducible abelian network acts freely and transitively on recurrent states of the network. We exhibit the critical group as a quotient of a free abelian group by a subgroup containing the image of the Laplacian, with equality in the case that the network is rectangular. We generalize Dhar's burning algorithm to abelian networks, and estimate the running time of an abelian network on an arbitrary input up to a constant additive error.Comment: supersedes sections 7 and 8 of arXiv:1309.3445v1. To appear in the Journal of Algebraic Combinatoric

    Fast simulation of large-scale growth models

    Full text link
    We give an algorithm that computes the final state of certain growth models without computing all intermediate states. Our technique is based on a "least action principle" which characterizes the odometer function of the growth process. Starting from an approximation for the odometer, we successively correct under- and overestimates and provably arrive at the correct final state. Internal diffusion-limited aggregation (IDLA) is one of the models amenable to our technique. The boundary fluctuations in IDLA were recently proved to be at most logarithmic in the size of the growth cluster, but the constant in front of the logarithm is still not known. As an application of our method, we calculate the size of fluctuations over two orders of magnitude beyond previous simulations, and use the results to estimate this constant.Comment: 27 pages, 9 figures. To appear in Random Structures & Algorithm
    corecore