194 research outputs found

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Hierarchical Framework for Automatic Pancreas Segmentation in MRI Using Continuous Max-flow and Min-Cuts Approach

    Get PDF
    Accurate, automatic and robust segmentation of the pancreas in medical image scans remains a challenging but important prerequisite for computer-aided diagnosis (CADx). This paper presents a tool for automatic pancreas segmentation in magnetic resonance imaging (MRI) scans. Proposed is a framework that employs a hierarchical pooling of information as follows: identify major pancreas region and apply contrast enhancement to differentiate between pancreatic and surrounding tissue; perform 3D segmentation by employing continuous max-flow and min-cuts approach, structured forest edge detection, and a training dataset of annotated pancreata; eliminate non-pancreatic contours from resultant segmentation via morphological operations on area, curvature and position between distinct contours. The proposed method is evaluated on a dataset of 20 MRI volumes, achieving a mean Dice Similarity coefficient of 75.5 ± 7.0% and a mean Jaccard Index coefficient of 61.2 ± 9.2%

    3D Deep Learning for Anatomical Structure Segmentation in Multiple Imaging Modalities

    Get PDF
    Accurate, automated quantitative segmentation of anatomical structures in radiological scans, such as Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), can produce significant biomarkers and can be integrated into computer-aided diagnosis (CADx) systems to support the in- terpretation of medical images from multi-protocol scanners. However, there are serious challenges towards developing robust automated segmentation techniques, including high variations in anatomical structure and size, varying image spatial resolutions resulting from different scanner protocols, and the presence of blurring artefacts. This paper presents a novel computing ap- proach for automated organ and muscle segmentation in medical images from multiple modalities by harnessing the advantages of deep learning techniques in a two-part process. (1) a 3D encoder-decoder, Rb-UNet, builds a localisation model and a 3D Tiramisu network generates a boundary-preserving segmentation model for each target structure; (2) the fully trained Rb-UNet predicts a 3D bounding box encapsulating the target structure of interest, after which the fully trained Tiramisu model performs segmentation to reveal organ or muscle boundaries for every protrusion and indentation. The proposed approach is evaluated on six different datasets, including MRI, Dynamic Contrast Enhanced (DCE) MRI and CT scans targeting the pancreas, liver, kidneys and iliopsoas muscles. We achieve quantitative measures of mean Dice similarity coefficient (DSC) that surpasses or are comparable with the state-of-the-art and demonstrate statistical stability. A qualitative evaluation performed by two independent experts in radiology and radiography verified the preservation of detailed organ and muscle boundaries

    Evaluation of Six Registration Methods for the Human Abdomen on Clinically Acquired CT

    Get PDF
    Objective: This work evaluates current 3-D image registration tools on clinically acquired abdominal computed tomography (CT) scans. Methods: Thirteen abdominal organs were manually labeled on a set of 100 CT images, and the 100 labeled images (i.e., atlases) were pairwise registered based on intensity information with six registration tools (FSL, ANTS-CC, ANTS-QUICK-MI, IRTK, NIFTYREG, and DEEDS). The Dice similarity coefficient (DSC), mean surface distance, and Hausdorff distance were calculated on the registered organs individually. Permutation tests and indifference-zone ranking were performed to examine the statistical and practical significance, respectively. Results: The results suggest that DEEDS yielded the best registration performance. However, due to the overall low DSC values, and substantial portion of low-performing outliers, great care must be taken when image registration is used for local interpretation of abdominal CT. Conclusion: There is substantial room for improvement in image registration for abdominal CT. Significance: All data and source code are available so that innovations in registration can be directly compared with the current generation of tools without excessive duplication of effort

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin

    Rich probabilistic models for semantic labeling

    Get PDF
    Das Ziel dieser Monographie ist es die Methoden und Anwendungen des semantischen Labelings zu erforschen. Unsere Beiträge zu diesem sich rasch entwickelten Thema sind bestimmte Aspekte der Modellierung und der Inferenz in probabilistischen Modellen und ihre Anwendungen in den interdisziplinären Bereichen der Computer Vision sowie medizinischer Bildverarbeitung und Fernerkundung
    • …
    corecore