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Abstract—Accurate, automated quantitative segmentation of
anatomical structures in radiological scans, such as Magnetic
Resonance Imaging (MRI) and Computer Tomography (CT),
can produce significant biomarkers and can be integrated into
computer-aided diagnosis (CADx) systems to support the in-
terpretation of medical images from multi-protocol scanners.
However, there are serious challenges towards developing robust
automated segmentation techniques, including high variations in
anatomical structure and size, varying image spatial resolutions
resulting from different scanner protocols, and the presence of
blurring artefacts. This paper presents a novel computing ap-
proach for automated organ and muscle segmentation in medical
images from multiple modalities by harnessing the advantages
of deep learning techniques in a two-part process. (1) a 3D
encoder-decoder, Rb-UNet, builds a localisation model and a 3D
Tiramisu network generates a boundary-preserving segmentation
model for each target structure; (2) the fully trained Rb-UNet
predicts a 3D bounding box encapsulating the target structure of
interest, after which the fully trained Tiramisu model performs
segmentation to reveal organ or muscle boundaries for every
protrusion and indentation. The proposed approach is evaluated
on six different datasets, including MRI, Dynamic Contrast
Enhanced (DCE) MRI and CT scans targeting the pancreas, liver,
kidneys and iliopsoas muscles. We achieve quantitative measures
of mean Dice similarity coefficient (DSC) that surpasses or are
comparable with the state-of-the-art and demonstrate statistical
stability. A qualitative evaluation performed by two independent
experts in radiology and radiography verified the preservation
of detailed organ and muscle boundaries.

Index Terms—automated organ segmentation, 3D deep learn-
ing, CADx system, anatomical structure, multiple modalities

I. INTRODUCTION

Medical imaging using non-invasive techniques has rapidly
evolved in the last decade, providing detailed and more
reliable images of anatomy in the human body [1]. Every
year millions of abdominal radiological scans of Magnetic
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Resonance Imaging (MRI) and Computer Tomography (CT)
modality are acquired. The accurate analysis and segmentation
of these scans’ anatomical structures can produce significant
biomarkers to examine a medical condition and provide addi-
tional guidance towards subject stratification after a diagnosis
or before a clinical trial [2]. Although expert-led, manual
segmentation in images from radiological scans can produce
clinically acceptable results for analysis, it is time-consuming,
sometimes prone to inter-observer variability, but above all, it
is challenging to replicate on a large-scale of multiple thou-
sands of scans. On the other hand, recent advances in CADx
have demonstrated the vital role of automated segmentation
in raising biomedical research quality concerning abdominal
organs [3]. Nonetheless, there are serious challenges in devel-
oping robust automated quantitative segmentation techniques,
mostly but not limited to high variations in organ structure
and size, varying spatial resolutions, and the imaged quality of
radiological scans of interest acquired from different scanner
modalities and protocols. Despite CT scanning taking less time
and costing less than MRI scanning, some types of cancers
or lesions, such as certain liver cancers, can be harder to
identify where otherwise detailed in an MRI scan. On the
other hand, MR imaging may not always differentiate between
excessive fluid edema and cancerous tissue due to similar
greyscale intensity and structure. Furthermore, both MRI and
CT scanning can produce blurring motion-based artefacts
resulting from breathing, cardiac movement and blood flow.

In recent research literature, various automated organ seg-
mentation methods have been proposed in the scheme of multi-
atlas label propagation (MALP) [4], [5] and convolutional
neural networks [6]–[8]. MALP segmentation methods employ
”atlases”, which are labelled regions of interest (e.g. organs)
and corresponding intensities in radiological image volumes.
Such methods usually employ image registration to align
the atlases to an (unseen) test image volume, which are
then combined using label fusion to determine the overall
segmentation [9]. Another set of approaches that often but not
always integrate into MALP is statistical shape modelling [10].
Such methods define a template shape for a given structure



representing the organ of interest with reliance upon control
points along the boundary, after which the entire shape is
deformed to match the test image volume. The approach
reported in [11] performs multi-organ segmentation by com-
bining spatial interrelations with multiple probabilistic atlases
and incorporating prior knowledge into the model using shape
representations of multiple organs. MALP methods in recent
years have achieved high accuracies in mean Dice similarity
coefficient (DSC) (≥ 70%). However, inter-patient registration
is computationally expensive and extremely poor to imaged
organs that possess high variability such as the pancreas [12].

In the last decade, the rise of convolutional neural networks
(CNNs) has boosted the performance of several imaging tasks
using large-scale data for semantic segmentation [13] and
has successfully applied to medical image segmentation tasks,
especially for abdominal organs that are highly deformable
and possess vague edge boundaries. Unlike MALP techniques,
CNNs do not require selecting a specific atlas nor require de-
formable registration from training datasets to a target image.
The publication [14] presents a deep learning segmentation
architecture, DenseVNet, for eight different organs relevant
for navigation in endoscopic pancreatic and biliary procedures,
including the pancreas. The DenseVNet segmentation net-
work aims to enable high-resolution activation maps through
(memory-efficient) dropout layers and reusing feature maps.
Two abdominal CT datasets containing a total of 90 image
volumes were employed to evaluate this approach. The authors
of [15] extend organ segmentation in MRI to present a method
that combines a MALP with CNN. This approach builds on
previous work described in [16] by incorporating weighting
schemes to support class imbalance and a specialised organ
region-of-interest selection. Later, spatial information from
multi-atlases and CNNs are optimised jointly and applied for
organ segmentation. This method is evaluated on a dataset
containing 48 whole MRI body volumes. The CNN methods
described above yield DSC results that outperform the reported
MALP approaches and produce a lower standard deviation.
However, such CNNs are prone to suffer from an imbalance
between classes and overfitting during the network training
stage [17], ignoring features related to the organ of interest
during the testing stage. Furthermore, many segmentation
methods have been performed on CT modality and do not
address the additional difficulties of image artefacts and higher
blurred boundaries between organs in MRI.

Considering the above challenges, the contributions of this
paper are: (a) a novel and robust automated 3D deep learning
approach for automated quantitative organ and muscle segmen-
tation in volumes from different modalities; (b) this approach
employs volumetric information instead of 2D feature learning
and is modular, scalable and generalisable; (c) the proposed
approach is evaluated on six different datasets of MRI,
Dynamic Contrast Enhanced (DCE) MRI and CT modality,
targeting four distinct abdominal structures (pancreas, liver,
kidneys and iliopsoas muscles); (d) we achieve mean DSC
scores that outperform or are comparable with state-of-the-art
and demonstrate high statistical stability, given the differences

in image quality. Section II explains the methodology of the
automated segmentation approach. Section III presents and
discusses the quantitative and qualitative results. Section IV
provides a conclusion for the proposed approach, including
reference to future work in the area of multi-organ segmenta-
tion.

II. METHODOLOGY

In 2D deep learning, the 3D radiological scans or image
volumes are processed slice by slice (2D image), whereas 3D
deep learning employs volumetric information instead of pixel
information in 2D. The proposed approach has a two-part
process: the first part develops a localisation model known
as 3D Rb-UNet to embody the organ of interest, and the
second part performs a detailed organ segmentation through
a 3D Tiramisu network. The testing stage process an original
radiological volume to predict the minimal bounding box that
captures the organ of interest and then processes the cropped
image volume to predict the target organ’s labels. The training
stage and testing stage for each part are shown in Fig. 1.

A. Training stage

a) Detection and Localisation: The first part of the train-
ing stage aims to localise the organ of interest and develops
a model defined as 3D Rb-UNet. In this model, residual
connections introduced in [18] are added at each block of
a baseline 3D U-Net [19] architecture, connecting the input
of convolutional layers at each scale to the outputs of the
corresponding layer. This architecture has the advantage of
alleviating the vanishing gradient problem. To begin, the size
of the image volume is reduced to 64 × 64 × 64 to limit
computational costs and have sufficient resolution necessary
for localisation and near isotropic resolution across x, y and
z dimensions. Inspired by the technique described in [20], for
datasets that contain 4D image volumes, the temporal dimen-
sion is reduced from 150 seconds (i.e. 150 image volumes) to
5 seconds (i.e. 5 image volumes) using Principal Component
Analysis (PCA). In this way, performance improves while
avoiding memory overload. Data augmentation is generated
as image scaled translations in the range [1, 4] pixels. The
weighted cross entropy loss function denoted as WCE is
employed to compensate for the class imbalance presented by
diverse anatomical structures:

WCE = − 1

N

N∑
i=1

wc
i [p̂i log pi + (1− p̂i) log(1− pi)] (1)

where N is number of voxels in an image volume, pi is
the probability of voxel i belonging to the foreground in each
output channel and p̂i represents the true ground-truth label in
the corresponding input channel. The wc

i is fixed as inversely
proportional to the probability of voxel i belonging to the
foreground class. Afterwards, softmax with weighted cross-
entropy loss is used to compare the network’s output with the
corresponding ground-truth.
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Fig. 1. Overview of the proposed automated organ segmentation approach. The training stage simultaneously develops a network (3D Rb-UNet) for localising
the organ, and a segmentation network (3D Tiramisu) to predict the labels that correspond to the organ of interest. The testing stage processes an original
scan (3D or 4D volume) to predict the bounding box capturing the organ and then processes the cropped image volume to predict the labels of that organ.

b) Segmentation: The second part of the training stage
develops a 3D Tiramisu model [21] using a uniformly cropped
region where the organ of interest is fully present, discarding
unrelated background information. The target organ’s main
region is captured using a minimal bounding box generated
via corresponding ground-truth labels, after which the image
volume dimensions are reduced to 64 × 64 × 64. This input
(with the temporal dimension reduced to 5 if using 4D data)
feeds into the 3D Tiramisu network for training the segmen-
tation model using the same weighted cross-entropy loss as
in (1). This model’s prediction aims to classify a voxel as
representing the target “organ” or “non-organ”. The Tiramisu
model builds upon Densely Connected Convolutional Net-
works (DenseNets) [22]. This model builds upon DenseNets
to work as Fully Convolutional Nets (FCN) by adding an
upsampling path to compensate for the input’s full resolution.
However, building an upsampling path would result in an
exponential rise in features maps. Thus, Tiramisu mitigates
this problem by implementing skip connections where the
feature maps from each step in the downsampling path are
concatenated with feature maps from the corresponding step in
the upsampling path. This allows the recovery of fine-grained
information from the downsampling layer. This architecture
builds a very deep FCN DenseNet while limiting the number
of parameters. Architecture details are provided in Fig. 2.

The bypass with residual identity connections for con-
volutional blocks at each scale in 3D Rb-UNet improves
convergence and allows faster training, which is excellent for
localisation. Meanwhile, the 3D Tiramisu provides a higher
capacity with multi-layer feature concatenation; it delivers
very detailed boundary-preserving fine segmentation given a
localised organ of interest as the primary input.

Fig. 2. Architecture details of Tiramisu network. m corresponds to the total
number of feature maps at the end of a block.

B. Testing stage

Initially, the fully trained 3D Rb-UNet performs a coarse
segmentation, i.e. voxel-based prediction using an unseen (test)
image volume. For target structures of interest consisting of
two distinct parts (e.g. left and right kidney or left and right
psoas muscle), there are three classes at this stage: “left”,
“right” and “background”. Otherwise, there are two main
classes of “foreground” and “background” (e.g. “pancreas”
versus “non-pancreas” or “liver” versus “non-liver”). After-
wards, the image volume resamples to its original size and
one or two bounding boxes are generated to “crop out” the
organ of interest throughout the entire 3D or 4D volume. The



cropped test volume is fitted to 64 × 64 × 64 dimensionality
and processed through the fully trained 3D Tiramisu model,
which performs detailed voxel-wise predictions on whether
each voxel corresponds to the organ of interest (foreground)
or otherwise (background). Afterwards, the predicted organ
binary mask is resampled to its original size and inserted
into the primary input image volume’s corresponding spatial
position.

C. Data and Experimental Setup

The proposed approach is evaluated on the following
datasets, each containing D image volumes.

• Pancreas: D = 216 (MRI-A). 196/20 for train/test. Anno-
tated on 3D fat suppressed T2-weighted MRI obtained
using a Philips Intera 1.5 Tesla (T) scanner (50 axial
slices of 384×384, voxel size 0.9766×0.9766×2 mm).

• Pancreas: D = 132 (MRI-B). 112/20 for train/test. Anno-
tated on 3D fat suppressed T2-weighted MRI obtained
using a Siemens Trio 3T scanner (80 axial slices of
320× 260, voxel size 1.1875× 1.1875× 1.6 mm).

• Pancreas: D = 82 (CT-NIH). 62/20 for train/test. Anno-
tated on 3D contrast-enhanced CT acquired on Philips
and Siemens MDCT scanners (161-466 axial slices of
512× 512, voxel sizes range from 1.5-2.5 mm in x-y-z).
Publicly available at http://dx.doi.org/10.7937/K9/TCIA.
2016.tNB1kqBU.

• Liver: D = 30 and 20/10 for train/test. Annotated on
3D T2-weighted MRI obtained using a Siemens Trio
3T scanner (370 axial slices of 224 × 174, voxel size
2.2321× 2.2321× 3 mm).

• Iliopsoas muscles: D = 30 and 20/10 for train/test.
Annotated on 3D T2-weighted MRI obtained using a
Siemens Trio 3T scanner (370 axial slices of 224× 174,
voxel size 2.2321× 2.2321× 3 mm).

• Kidneys: D = 60 and 34/26 for train/test. Annotated on
4D DCE-MRI scans of acquired at 3 Tesla (T) for 6
minutes after injecting Gadavist using a motion-robust,
radial stack-of-stars 3D FLASH sequence (32 coronal
slices of 224× 224, voxel size 1.25× 1.25× 3 mm).

The proposed method has been implemented using Python
3.0 and Keras in an i7-5930K-CPU at 3.5 GHz (NVIDIA
GeForce TitanX). The optimisation algorithm used for training
is Adam [23] with an initial learning rate of 0.0001. The
hyperparameters include a reduction rate (0.8), growth rate
(12), momentum (0.9), weight decay (10−8) and a drop-out
rate (0.2). The learning rate drop period is 50 and the learning
rate drop factor is 0.5. The maximum number of epochs is
400 and the size of the mini-batch to use for each training
iteration is set to 4 (with a validation split of 0.5).

D. Evaluation

A popular metric used to evaluate the segmentation accuracy
is the Dice similarity coefficient (DSC), which is defined as
DSC = 2(|G ∩ S|)/(|G| + |S|), where G is a volumetric
ground-truth and S is the corresponding automated segmen-
tation labels. A second commonly used metric, Jaccard index

(JI), is considered and defined as JI = (|G ∩ S|)/(|G ∪ S|).
Both metrics can be described as the quotient of similarity
between 0 and 1 (or 0 to 100%).

TABLE I
DSC AND JI FOR AUTOMATED PANCREAS SEGMENTATION IN MRI

MRI-A MRI-B
Method DSC(%) JI (%) DSC (%) JI (%)
2D UNet [19] 69.1±10.2 53.8±14.2 72.8±7.5 67.9±10.2
2D FCN [13] 70.2±8.5 63.5±13.5 70.9±7.7 65.4±13.5
Deeporgan [24] 44.5±25.2 32.7±29.4 50.1±22.7 44.9±12.0
Multiorgan [14] 52.6±17.1 44.1±20.7 55.8±18.6 49.9±18.7
Casc. 3D FCN [25] 65.2±10.1 52.2±15.3 69.6±11.5 61.2±15.9
Geo. descript. [26] 79.6±5.7 66.5±7.9 81.6±5.1 69.2±7.1
Hausdorff-Sine [27] 84.1±4.6 72.9±6.5 85.7±2.3 75.1±3.5
Proposed 89.9±3.4 81.9± 5.6 90.2±5.1 82.6±7.8

TABLE II
DSC AND JI FOR AUTOMATED PANCREAS SEGMENTATION IN CT

CT-NIH
Method DSC (%) JI (%)
2D UNet [19] 79.7±7.6 66.3±4.0
2D FCN [13] 80.3±9.0 67.1±4.7
Recurrent NN [16] 82.4±6.7 70.6±9.0
Holistically-nested CNN [12] 81.3±6.2 68.5±3.2
Cascade 3D FCN [25] 76.8±9.4 62.3±4.9
Geo. Descriptors [26] 79.3±4.4 66.1±6.2
Hausdorff-Sine [27] 83.1±5.3 71.4±7.4
Proposed 84.7±7.9 74.2±11.4

III. RESULTS AND DISCUSSION

The proposed approach is applied to segment the pancreas
using two MRI datasets (MRI-A and MRI-B) and one CT
dataset (CT-NIH). It is noted that MRI-A and MRI-B were
produced from subjects that showed early signs of type 2
diabetes, while CT-NIH was produced from healthy kidney
donors scanned before nephrectomy. This approach is directly
evaluated against the state-of-the-art segmentation models as
shown in Table I and Table II, achieving a mean DSC (%)
± Standard deviation (SD) of 89.9 ± 3.4 for MRI-A, 90.2 ±
5.1 for MRI-B and 84.7 ± 7.9 for CT scans. The proposed
approach outperforms other works in terms of mean DSC and
JI for all three datasets. The proposed approach is extended
to a broader spectrum of MRI sequences and organs. As
shown in Table III, the segmentation results for the liver
achieves a mean DSC of 95.64 ± 1.31% and mean JI of 91.66
± 2.42% reflecting the ability to better address a diversity
of artefact-prone imaging compared with the state-of-the-art,
which achieved mean DSC scores of 94% [28], 72.9% [19] and
94.5% [29]. The segmentation results for iliopsoas muscles
deliver a mean DSC of 88.41 ± 2.39% and a mean JI of
78.56 ± 3.59%, raising the state-of-the-art when compared
with 72.3% in mean JI [30].

The kidneys dataset contains pediatric DCE-MRI 4D vol-
umes with a clinical “normal” assessment and varying levels of
hydronephrosis that exhibit irregular shape, size and location.
Evaluating the“normal” dataset (30 volumes) achieves a mean
DSC of 90.48% ± 1.56% and a mean JI of 82.64 ± 2.61%

http://dx.doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
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TABLE III
SUMMARY OF DSC RESULTS FOR AUTOMATED SEGMENTATION OF DIFFERENT ANATOMICAL STRUCTURES AND MODALITIES

Anatomical Structure Clinical Assessment Modality Data dimension Dataset Size DSC (%)
Pancreas Early type 2 diabetes MRI 3D 216 89.9 ± 3.4
Pancreas Early type 2 diabetes MRI 3D 132 90.2 ± 5.1
Pancreas Normal CT 3D 82 84.7 ± 7.9
Liver Normal MRI 3D 30 95.64 ± 1.31
Iliopsoas muscles Normal MRI 3D 30 88.41 ± 2.39
Kidneys Normal DCE-MRI 4D 30 90.48 ± 1.56
Kidneys Hydronephrosis DCE-MRI 4D 30 86.44 ± 3.84

Fig. 3. For each dataset, two different medical scans are shown with superimposed segmentation outcome (green) and ground-truth (red), and DSC on top.

as shown in Table III. The low standard deviation demon-
strates robustness toward intensity variation of contextual
information. In contrast, the 3D U-Net (including the Rb-
UNet localisation) delivers poorer quantitative accuracy, as in
DSC of 82.89 ± 5.0% indicating weak stability. Although 3D
DenseNet (including the Rb-UNet localisation) delivers better
accuracy than 3D U-Net, the approach is still inferior to the
proposed approach, achieving a mean DSC of 85.09 ± 6.00%.

The segmentation results obtained for the ”hydronephrosis”
dataset (30 volumes) continues to demonstrate statistical sta-

bility, achieving a mean DSC of 86.44 ± 3.84% and mean JI
of 76.29 ± 5.93%. The baseline 3D U-Net suffers from high
instability, trailing behind with a mean DSC of 78.94 ± 9.10%,
while the performance of the 3D DenseNet produces a mean
DSC of 84.51 ± 3.30%. Fig. 3 displays the results for two
image volumes from each of the six datasets. For each image
volume, the top row shows a 2D slice with the segmentation
outcome (green) and ground-truth (red) superimposed and the
DSC. Similarly, the bottom row shows the 3D reconstruction
of the entire target anatomical structure.



Qualitative feedback from two independent experts in radi-
ology and radiography confirmed that the approach produces
detailed organ and muscle contouring for every protrusion and
indentation, as opposed to an approximate tracing, which is
an essential determinant for stratifying between ”normal” and
”abnormal” variations in a clinical assessment.

IV. CONCLUSION

There are serious challenges towards developing robust seg-
mentation methods, mostly but not limited to high variations in
anatomical structure and size and distinct datasets that corre-
spond to different scanner modalities, protocols and image res-
olution. The proposed approach generates automated, accurate
organ or muscle segmentation via 3D deep learning instead of
2D feature learning by exploiting volumetric contextual infor-
mation to perform localisation followed by fine segmentation
of the target anatomical structure. The proposed approach is
applied to four distinct abdominal structures of high inter-
variability. We achieve robust segmentation performance better
than or close to the state-of-the-art using CT, MRI and DCE-
MRI and reports higher statistical stability with lower standard
deviation measures. The segmentation approach can extend to
serve as a tool for the classification of clinical measures and
could provide an indication or prognostic biomarker about the
progression or severity of a medical condition.
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