1,830 research outputs found

    Neural Graph Transfer Learning in Natural Language Processing Tasks

    Get PDF
    Natural language is essential in our daily lives as we rely on languages to communicate and exchange information. A fundamental goal for natural language processing (NLP) is to let the machine understand natural language to help or replace human experts to mine knowledge and complete tasks. Many NLP tasks deal with sequential data. For example, a sentence is considered as a sequence of works. Very recently, deep learning-based language models (i.e.,BERT \citep{devlin2018bert}) achieved significant improvement in many existing tasks, including text classification and natural language inference. However, not all tasks can be formulated using sequence models. Specifically, graph-structured data is also fundamental in NLP, including entity linking, entity classification, relation extraction, abstractive meaning representation, and knowledge graphs \citep{santoro2017simple,hamilton2017representation,kipf2016semi}. In this scenario, BERT-based pretrained models may not be suitable. Graph Convolutional Neural Network (GCN) \citep{kipf2016semi} is a deep neural network model designed for graphs. It has shown great potential in text classification, link prediction, question answering and so on. This dissertation presents novel graph models for NLP tasks, including text classification, prerequisite chain learning, and coreference resolution. We focus on different perspectives of graph convolutional network modeling: for text classification, a novel graph construction method is proposed which allows interpretability for the prediction; for prerequisite chain learning, we propose multiple aggregation functions that utilize neighbors for better information exchange; for coreference resolution, we study how graph pretraining can help when labeled data is limited. Moreover, an important branch is to apply pretrained language models for the mentioned tasks. So, this dissertation also focuses on the transfer learning method that generalizes pretrained models to other domains, including medical, cross-lingual, and web data. Finally, we propose a new task called unsupervised cross-domain prerequisite chain learning, and study novel graph-based methods to transfer knowledge over graphs

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    Unsupervised Biomedical Named Entity Recognition

    Get PDF
    Named entity recognition (NER) from text is an important task for several applications, including in the biomedical domain. Supervised machine learning based systems have been the most successful on NER task, however, they require correct annotations in large quantities for training. Annotating text manually is very labor intensive and also needs domain expertise. The purpose of this research is to reduce human annotation effort and to decrease cost of annotation for building NER systems in the biomedical domain. The method developed in this work is based on leveraging the availability of resources like UMLS (Unified Medical Language System), that contain a list of biomedical entities and a large unannotated corpus to build an unsupervised NER system that does not require any manual annotations. The method that we developed in this research has two phases. In the first phase, a biomedical corpus is automatically annotated with some named entities using UMLS through unambiguous exact matching which we call weakly-labeled data. In this data, positive examples are the entities in the text that exactly match in UMLS and have only one semantic type which belongs to the desired entity class to be extracted (for example, diseases and disorders). Negative examples are the entities in the text that exactly match in UMLS but are of semantic types other than those that belong to the desired entity class. These examples are then used to train a machine learning classifier using features that represent the contexts in which they appeared in the text. The trained classifier is applied back to the text to gather more examples iteratively through the process of self-training. The trained classifier is then capable of classifying mentions in an unseen text as of the desired entity class or not from the contexts in which they appear. Although the trained named entity detector is good at detecting the presence of entities of the desired class in text, it cannot determine their correct boundaries. In the second phase of our method, called “Boundary Expansion”, the correct boundaries of the entities are determined. This method is based on a novel idea that utilizes machine learning and UMLS. Training examples for boundary expansion are gathered directly from UMLS and do not require any manual annotations. We also developed a new WordNet based approach for boundary expansion. Our developed method was evaluated on three datasets - SemEval 2014 Task 7 dataset that has diseases and disorders as the desired entity class, GENIA dataset that has proteins, DNAs, RNAs, cell types, and cell lines as the desired entity classes, and i2b2 dataset that has problems, tests, and treatments as the desired entity classes. Our method performed well and obtained performance close to supervised methods on the SemEval dataset. On the other datasets, it outperformed an existing unsupervised method on most entity classes. Availability of a list of entity names with their semantic types and a large unannotated corpus are the only requirements of our method to work well. Given these, our method generalizes across different types of entities and different types of biomedical text. Being unsupervised, the method can be easily applied to new NER tasks without needing costly annotations

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: A systematic literature review

    Get PDF
    OBJECTIVE: Alzheimer disease (AD) is the most common cause of dementia, a syndrome characterized by cognitive impairment severe enough to interfere with activities of daily life. We aimed to conduct a systematic literature review (SLR) of studies that applied machine learning (ML) methods to clinical data derived from electronic health records in order to model risk for progression of AD dementia. MATERIALS AND METHODS: We searched for articles published between January 1, 2010, and May 31, 2020, in PubMed, Scopus, ScienceDirect, IEEE Explore Digital Library, Association for Computing Machinery Digital Library, and arXiv. We used predefined criteria to select relevant articles and summarized them according to key components of ML analysis such as data characteristics, computational algorithms, and research focus. RESULTS: There has been a considerable rise over the past 5 years in the number of research papers using ML-based analysis for AD dementia modeling. We reviewed 64 relevant articles in our SLR. The results suggest that majority of existing research has focused on predicting progression of AD dementia using publicly available datasets containing both neuroimaging and clinical data (neurobehavioral status exam scores, patient demographics, neuroimaging data, and laboratory test values). DISCUSSION: Identifying individuals at risk for progression of AD dementia could potentially help to personalize disease management to plan future care. Clinical data consisting of both structured data tables and clinical notes can be effectively used in ML-based approaches to model risk for AD dementia progression. Data sharing and reproducibility of results can enhance the impact, adaptation, and generalizability of this research
    • …
    corecore