108,245 research outputs found

    Torsional anharmonicity in the conformational thermodynamics of flexible molecules

    Get PDF
    We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule

    A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --

    Full text link
    The ab initio calculation with the density functional theory and plane-wave bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a cleavage simulation by the large-scale (order-N) electronic structure theory (T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The present ab initio calculation confirms the predicted stepped structure and its bias-dependent STM image. Moreover, two (meta)stable step-edge structures are found and compared. The investigation is carried out also for Ge(111)-2x1 surfaces, so as to construct a common understanding among elements. The present study demonstrates the general importance of the hierarchical research between large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica

    Thermodynamic stability of Fe/O solid solution at inner-core conditions

    Get PDF
    We present a new technique which allows the fully {\em ab initio} calculation of the chemical potential of a substitutional impurity in a high-temperature crystal, including harmonic and anharmonic lattice vibrations. The technique uses the combination of thermodynamic integration and reference models developed recently for the {\em ab initio} calculation of the free energy of liquids and anharmonic solids. We apply the technique to the case of the substitutional oxygen impurity in h.c.p. iron under Earth's core conditions, which earlier static {\em ab initio} calculations indicated to be thermodynamically very unstable. Our results show that entropic effects arising from the large vibrational amplitude of the oxygen impurity give a major reduction of the oxygen chemical potential, so that oxygen dissolved in h.c.p. iron may be stabilised at concentrations up a few mol % under core conditions

    Ab initio calculation of Li7 photodisintegration

    Full text link
    The Li7 total photoabsorption cross section is calculated microscopically. As nucleon-nucleon interaction the semi-realistic central AV4' potential with S- and P-wave forces is taken. The interaction of the final 7-nucleon system is fully taken into account via the Lorentz Integral Transform (LIT) method. For the calculation of the LIT we use expansions in hyperspherical harmonics (HH) in conjunction with the HH effective interaction (EIHH) approach. The convergence of the LIT expansion is discussed in detail. The calculated cross section agrees quite well with the available experimental data, which cover an energy range from threshold up to 100 MeV.Comment: 11 pages with 3 figure

    The vibrational dynamics of vitreous silica: Classical force fields vs. first-principles

    Full text link
    We compare the vibrational properties of model SiO_2 glasses generated by molecular-dynamics simulations using the effective force field of van Beest et al. (BKS) with those obtained when the BKS structure is relaxed using an ab initio calculation in the framework of the density functional theory. We find that this relaxation significantly improves the agreement of the density of states with the experimental result. For frequencies between 14 and 26 THz the nature of the vibrational modes as determined from the BKS model is very different from the one from the ab initio calculation, showing that the interpretation of the vibrational spectra in terms of calculations using effective potentials can be very misleading.Comment: 7 pages of Latex, 4 figure

    Ab initio calculation of the Hoyle state

    Get PDF
    The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle [1] as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago [2,3], nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine-tuning needed in nature for the production of carbon in stars.Comment: 4 pp, 3 eps figs, version accepted for publication in Physical Review Letter

    Quantum Monte Carlo study of inhomogeneous neutron matter

    Full text link
    We present an ab-initio study of neutron drops. We use Quantum Monte Carlo techniques to calculate the energy up to 54 neutrons in different external potentials, and we compare the results with Skyrme forces. We also calculate the rms radii and radial densities, and we find that a re-adjustment of the gradient term in Skyrme is needed in order to reproduce the properties of these systems given by the ab-initio calculation. By using the ab-initio results for neutron drops for close- and open-shell configurations, we suggest how to improve Skyrme forces when dealing with systems with large isospin-asymmetries like neutron-rich nuclei.Comment: 8 pages, 6 figures, talk given at Horizons on Innovative Theories, Experiments, and Supercomputing in Nuclear Physics 2012, (HITES2012), New Orleans, Louisiana, June 4-7, 2012; to appear in Journal of Physics: Conference Series (JPCS
    corecore