798 research outputs found

    Enabling Runtime Self-Coordination of Reconfigurable Embedded Smart Cameras in Distributed Networks

    Get PDF
    Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason being the poor coordination among cameras entities at runtime and the lack of a clear formalism to dynamically capture and address the self-organization problem without relying on human intervention. In this dissertation, we investigate the use of a declarative-based modeling approach for capturing runtime self-coordination. We combine modeling approaches borrowed from logic programming, computer vision techniques, and high-performance computing for the design of an autonomous and cooperative smart camera. We propose a compact modeling approach based on Answer Set Programming for architecture synthesis of a system-on-reconfigurable-chip camera that is able to support the runtime cooperative work and collaboration with other camera nodes in a distributed network setup. Additionally, we propose a declarative approach for modeling runtime camera self-coordination for distributed object tracking in which moving targets are handed over in a distributed manner and recovered in case of node failure

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF

    Improving Performance of Feedback-Based Real-Time Networks using Model Checking and Reinforcement Learning

    Get PDF
    Traditionally, automatic control techniques arose due to need for automation in mechanical systems. These techniques rely on robust mathematical modelling of physical systems with the goal to drive their behaviour to desired set-points. Decades of research have successfully automated, optimized, and ensured safety of a wide variety of mechanical systems. Recent advancement in digital technology has made computers pervasive into every facet of life. As such, there have been many recent attempts to incorporate control techniques into digital technology. This thesis investigates the intersection and co-application of control theory and computer science to evaluate and improve performance of time-critical systems. The thesis applies two different research areas, namely, model checking and reinforcement learning to design and evaluate two unique real-time networks in conjunction with control technologies. The first is a camera surveillance system with the goal of constrained resource allocation to self-adaptive cameras. The second is a dual-delay real-time communication network with the goal of safe packet routing with minimal delays.The camera surveillance system consists of self-adaptive cameras and a centralized manager, in which the cameras capture a stream of images and transmit them to a central manager over a shared constrained communication channel. The event-based manager allocates fractions of the shared bandwidth to all cameras in the network. The thesis provides guarantees on the behaviour of the camera surveillance network through model checking. Disturbances that arise during image capture due to variations in capture scenes are modelled using probabilistic and non-deterministic Markov Decision Processes (MDPs). The different properties of the camera network such as the number of frame drops and bandwidth reallocations are evaluated through formal verification.The second part of the thesis explores packet routing for real-time networks constructed with nodes and directed edges. Each edge in the network consists of two different delays, a worst-case delay that captures high load characteristics, and a typical delay that captures the current network load. Each node in the network takes safe routing decisions by considering delays already encountered and the amount of remaining time. The thesis applies reinforcement learning to route packets through the network with minimal delays while ensuring the total path delay from source to destination does not exceed the pre-determined deadline of the packet. The reinforcement learning algorithm explores new edges to find optimal routing paths while ensuring safety through a simple pre-processing algorithm. The thesis shows that it is possible to apply powerful reinforcement learning techniques to time-critical systems with expert knowledge about the system

    Speeding up Adaboost object detection with motion segmentation and Haar feature acceleration

    Get PDF
    A key challenge in a surveillance system is the object detection task. Object detection in general is a non-trivial problem. A sub-problem within the broader context of object detection which many researchers focus on is face detection. Numerous techniques have been proposed for face detection. One of the better performing algorithms is proposed by Viola et. al. This algorithm is based on Adaboost and uses Haar features to detect objects. The main reason for its popularity is very low false positive rates and the fact that the classifier network can be trained for any detection task. The use of Haar basis functions to represent key object features is the key to its success. The basis functions are organized as a network to form a strong classifier. To detect objects, this technique divides each input image into non-overlapping sub-windows and the strong classifier is applied to each sub-window to detect the presence of an object. The process is repeated at multiple scales of the input image to detect objects of various sizes. In this thesis we propose an object detection system that uses object segmentation as a preprocessing step. We use Mixture of Gaussians (MoG) proposed by Staffer et. al. for object segmentation. One key advantage with using segmentation to extract image regions of interest is that it reduces the number of search windows sent to detection task, thereby reducing the computational complexity and the execution time. Moreover, owing to the computational complexity of both the segmentation and detection algorithms we used in the system, we propose hardware architectures for accelerating key computationally intensive blocks. In this thesis we propose hardware architecture for MoG and also for a key compute intensive block within the adaboost algorithm corresponding to the Haar feature computation

    mHealth Engineering: A Technology Review

    Get PDF
    In this paper, we review the technological bases of mobile health (mHealth). First, we derive a component-based mHealth architecture prototype from an Institute of Electrical and Electronics Engineers (IEEE)-based multistage research and filter process. Second, we analyze medical databases with regard to these prototypic mhealth system components.. We show the current state of research literature concerning portable devices with standard and additional equipment, data transmission technology, interface, operating systems and software embedment, internal and external memory, and power-supply issues. We also focus on synergy effects by combining different mHealth technologies (e.g., BT-LE combined with RFID link technology). Finally, we also make suggestions for future improvements in mHealth technology (e.g., data-protection issues, energy supply, data processing and storage)
    corecore