411 research outputs found

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF

    Performance Analysis and Cooperation Mode Switch in HARQ-based Relaying

    Get PDF
    We study the optimal, in terms of power-limited outage probability (OP), placement of the relay and investigate the effect of relay placement on the optimal cooperation mode of the source and the relay nodes. Using hybrid automatic repeat request (HARQ) based relaying techniques, general expressions for the OP and the average transmit power are derived. The results are then particularized to the repetition time diversity (RTD) protocol. The analytical expressions are used to find the transmit powers minimizing the power-limited OP. Our results demonstrate that adaptive power allocation reduces the OP significantly. For instance, consider a Rayleigh fading channel, an OP of 10^-3 and a maximum of 2 RTD-based retransmissions. Then, compared to equal power allocation, the required transmission signal-to-noise ratio (SNR) is reduced by 5 dB, if adaptive power allocation is utilized. Another important observation is that, depending on the relay positions and the total power budget, the system should switch between the single-node transmission mode and the joint transmission mode, in order to minimize the outage probability

    CARLA: combining Cooperative Relaying and Link Adaptation for IEEE 802.11 wireless networks

    Get PDF

    Persistent RCSMA: a MAC protocol for a distributed cooperative ARQ scheme in wireless networks

    Get PDF
    EURASIP Best Paper Award for the "Jounal on Advances in Signal Processing"The persistent relay carrier sensing multiple access (PRCSMA) protocol is presented in this paper as a novel medium access control (MAC) protocol that allows for the execution of a distributed cooperative automatic retransmission request (ARQ) scheme in IEEE 802.11 wireless networks. The underlying idea of the PRCSMA protocol is to modify the basic rules of the IEEE 802.11 MAC protocol to execute a distributed cooperative ARQ scheme in wireless networks in order to enhance their performance and to extend coverage. A closed formulation of the distributed cooperative ARQ average packet transmission delay in a saturated network is derived in the paper. The analytical equations are then used to evaluate the performance of the protocol under different network configurations. Both the accuracy of the analysis and the performance evaluation of the protocol are supported and validated through computer simulations.Peer ReviewedAward-winningPostprint (published version

    Analytic Performance Model for State-Based MAC Layer Cooperative Retransmission Protocols

    Get PDF
    © 2015 IEEE. Cooperative retransmission can significantly improve link reliability over lossy and time-varying wireless links. However, comparing retransmission protocols is challenging, and generally requires simplistic assumptions specific to each protocol. In this paper, we develop a general model to evaluate cooperative retransmission protocols with distributed, slot-based contention algorithms. Specifically, we propose to calculate the relay time-out probabilities at a MAC time-slot scale, formulate retransmission outcomes as functions of the time-out probabilities, and derive the probability of a retransmission process for every data frame. We also propose a Markov extension of our model to characterise the dependency between retransmissions of multiple frames. This enables our model to analyse continuous retransmissions of successive frames. Validated by QualNet simulations, our model can analytically predict the probabilities of cooperative retransmissions with an accuracy of ± 1%. As a result, direct comparisons between cooperative retransmission protocols become tangible, without implementing the full protocol in a state-based simulator

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    • 

    corecore